Results of Proficiency Test Caustic Soda September 2018

Organised by:Institute for Interlaboratory Studies
Spijkenisse, the NetherlandsAuthors:ing. C.M. Nijssen-Wester
ing. A.S. Noordman-de Neef & ing. R.J. Starink

Report: iis18C06

November 2018

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	5
2.6	ANALYSES	5
3	RESULTS	6
3.1	STATISTICS	6
3.2	GRAPHICS	7
3.3	Z-SCORES	7
4	EVALUATION	8
4.1	EVALUATION PER TEST	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10
4.3	COMPARISON OF THE PROFICIENCY TEST OF SEPTEMBER 2018 WITH PREVIOUS PTs	10

Apper	ndices:	
1.	Data and statistical results	12
2.	Number of participants per country	22
3.	Abbreviations and literature	23

1 INTRODUCTION

Since 2012, the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for Caustic Soda every other year. During the annual proficiency testing program 2018/2019, it was decided to continue the round robin for the analysis of Caustic Soda. Depending on the production process a number of Caustic Soda grades are available on the market. To fulfil the scope, in this proficiency test two different samples were prepared: one with a low concentration Chloride (low salt) and one with a relatively high concentration Chloride (high salt).

In this interlaboratory study, 42 laboratories in 25 different countries registered for participation. See appendix 2 for the number of participants per country. In this report, the results of the 2018 proficiency test on Caustic Soda are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test (PT). Sample analyses for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. Sample #18155 was a low NaCl Caustic Soda. Sample #18156 was the same Caustic spiked with Sodium Chloride, Sodium Chlorate and Sodium Sulfate. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for the statistical evaluations.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary 50 litre bulk Caustic Soda was provided by a third party. From this batch, after homogenizing, 60 HDPE bottles of 0.5 litre were filled and labelled #18155.

The homogeneity of the subsamples #18155 was checked by determination of Density at 20°C in accordance with ASTM D4052 and Total Alkalinity as NaOH in accordance with ASTM E291 on 4 stratified randomly selected samples.

	Density at 20°C in kg/L	Total Alkalinity as NaOH in %M/M
sample #18155-1	1.52833	50.51
sample #18155-2	1.52837	50.48
sample #18155-3	1.52836	50.51
sample #18155-4	1.52836	50.50

Table 1: homogeneity test results of subsamples #18155

From the above test results, the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibility of the reference test methods in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Density at 20°C in kg/L	Total Alkalinity as NaOH in %M/M	
r (observed)	0.00005	0.04	
reference test method	ISO12185:96	ASTM E291:18	
0.3 x R (ref. test method)	0.00015	0.21	

Table 2: evaluation of the repeatabilities of the subsamples #18155

The remaining bulk material of 17 L (approx. 25 kg) was spiked with the components listed in table 3:

Component	Amount in g
Sodium Chloride	229
Sodium Chlorate	25.8
Sodium Sulfate	7.8

Table 3: components that were added to bulk material for sample #18156

After homogenisation, this batch was divided over 52 HDPE bottles of 0.25 L and labelled #18156. The homogeneity of the subsamples #18156 was checked by determination of Sodium Chlorate and Sodium Sulphate in accordance with ASTM E291 on 4 stratified randomly selected samples.

	Sodium Chlorate as NaClO₃ in %M/M	Sodium Sulphate as Na₂SO₄ in %M/M		
sample #18156-1	0.1065	0.0260		
sample #18156-2	0.1055	0.0260		
sample #18156-3	0.1070	0.0260		
sample #18156-4	0.1065	0.0260		

Table 4: homogeneity test results of subsamples #18156

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibility of the reference methods in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Sodium Chlorate as NaClO ₃ in %M/M	Sodium Sulphate as Na ₂ SO ₄ in %M/M		
r (observed)	0.0018	0.0000		
reference	Horwitz	ASTM E291:18		
0.3 x R (reference)	0.0050	0.0066		

Table 5: evaluation of the repeatabilities of the subsamples #18156

The calculated repeatabilities were in agreement with 0.3 times the corresponding reproducibility of the reference test methods. Therefore, homogeneity of the subsamples #18155 and #18156 were assumed.

To the participants 1x0.5L sample labelled #18155 and 1x0.25L sample labelled #18156 were sent on August 15, 2018. An MSDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of Caustic Soda, packed in the HDPE bottles, was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were requested to determine Alkalinity as NaOH, Appearance, Density at 20°C, Iron as Fe, Sodium Chloride as NaCl, Sodium Chlorate as NaClO₃ and Sodium Sulphate as Na_2SO_4 on the low salt sample #18155. On the high salt sample #18156 was requested to determine Sodium Chloride as NaCl, Sodium Chlorate as NaClO₃ and Sodium Sulphate as Na_2SO_4 .

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the results but report as much significant figures as possible. It was also requested not to report 'less than' results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the appropriate reference test methods that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this date entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment.

Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalysis). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018' (iis-protocol, version 3.5). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a dataset does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

According to ISO 5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 **GRAPHICS**

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation of this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used. In some cases, a reproducibility based on former iis proficiency tests could be used.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{(target)} = (test result - average of PT) / target standard deviation$

The $z_{(target)}$ scores are listed in the test result tables in appendix 1.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. The usual interpretation of z-scores is as follows:

|z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory

4 EVALUATION

In this interlaboratory study, problems with sample dispatch were encountered due to custom clearance for the participants in Brazil. One participant reported test results after the final reporting date. Four participants did not report any result at all. Not all participants were able to report all requested parameters. In total 38 participants reported 181 numerical results. Observed were 13 outlying test results, which is 7.2% of the total of numerical test results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER SAMPLE AND PER TEST

In this section, the reported test results are discussed per sample and per test. The specified test methods and requirements were taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in appendix 3. In this section, the results are discussed per test.

Sample #18155

<u>Alkalinity</u>: This determination was problematic. One statistical outlier was observed. The observed reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ASTM E291:18.

- <u>Appearance</u>: All reporting laboratories, except two, agreed about the appearance of the sample #18155, which was Pass (bright, clear and free from suspended matter).
- <u>Density at 20°C</u>: This determination was problematic. Two statistical outliers were observed and one other test result was excluded. The calculated reproducibility after rejection of the suspect data is not in agreement with the requirements of ISO12185:96.
- Iron:This determination was very problematic at the low level of 0.6 mg/kg.
One statistical outlier was observed. The calculated reproducibility after
rejection of the statistical outlier was not at all in agreement with the
requirements of ASTM E291:18.
It was decided not to calculate z-scores because the average of the group
is below the precision range of the used test method.
- <u>Sodium Chloride</u>: This determination was problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM E1787:16.
- Sodium Chlorate: This determination was not problematic at the low level of 2.3 mg/kg. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM E1787:16.
- Sodium Sulphate: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM E1787:16.

Sample #18156

- <u>Sodium Chloride</u>: This determination was not problematic at the high level of 0.84%M/M. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM E291:18. This sample was spiked with Sodium Chloride. The recovery of 94% may be good ((0.8423_(avg.) – 0.056_(avg. of #18155)) / 0.8947_(added amount) * 100%).
- <u>Sodium Chlorate</u>: This determination was problematic at the high level of 0.093%M/M. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the target reproducibility estimated from the Horwitz equation. This sample was spiked with Sodium Chlorate. The recovery of 92% is good ((0.0933_(avg.) – 0.0002_(avg. of #18155)) / 0.1009_(added amount) * 100%).

<u>Sodium Sulphate</u>: This determination was problematic at the high level of 0.0111%M/M. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ASTM E291:18. This sample was spiked with Sodium Sulphate. The recovery of 32% is marginal ((0.0111_(avg.) – 0.0012_(avg. of #18155)) / 0.0305_(added amount) * 100%).

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the relevant reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average result, the calculated reproducibility (2.8*standard deviation) and reproducibility derived from literature reference methods (in casu ASTM, EN standards) are presented in the next tables.

Parameter	unit	n	average	2.8 * sd	R (lit)
Alkalinity as NaOH	%M/M	35	50.21	0.80	0.70
Appearance		25	Pass	n.a.	n.a.
Density at 20°C	kg/L	26	1.5283	0.0009	0.0005
Iron as Fe	mg/kg	28	0.62	(1.07)*	(0.18)*
Sodium Chloride as NaCl	mg/kg	23	55.9	17.7	12.9
Sodium Chlorate as NaClO3	mg/kg	10	2.3	3.3	5.6
Sodium Sulphate as Na ₂ SO ₄	mg/kg	12	12.2	17.2	30.8

 Table 6: Reproducibilities of tests for sample #18155

*) Results between brackets are outside of the precision range of the method.

Parameter	unit	n	average	2.8 * sd	R (lit)
Sodium Chloride as NaCl	%M/M	22	0.842	0.052	0.08
Sodium Chlorate as NaClO ₃	%M/M	11	0.093	0.027	0.011
Sodium Sulphate as Na ₂ SO ₄	%M/M	15	0.011	0.015	0.009

Table 7: Reproducibilities of tests for sample #18156

Without further statistical calculations, it can be concluded that for several tests there is not a good compliance of the group of participating laboratories with the relevant standards. The tests that are problematic have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF SEPTEMBER 2018 WITH PREVIOUS PTS

	September 2018	September 2016	September 2014	September 2012
Number of reporting labs	38	30	26	25
Number of results reported	181	175	150	145
Statistical outliers	13	17	10	13
Percentage outliers	7.2%	9.7%	6.7%	9.0%

Table 8: comparison with previous proficiency tests.

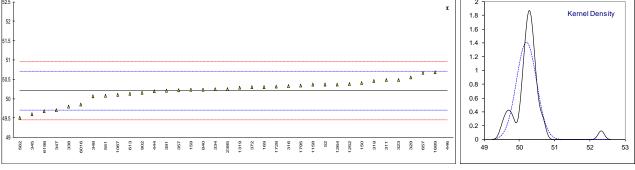
In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the respective reference test methods. The conclusions are given the following table:

	September 2018	September 2016	September 2014	September 2012
Low Salt Caustic Soda:				
Alkalinity as NaOH	-	++	+	+
Density at 20°C		-	-	-
Iron as Fe	()	-	+/-	-
Sodium Chloride as NaCl	-	+/-		-
Sodium Chlorate as NaClO3	+	++	()	()
Sodium Sulphate as Na ₂ SO ₄	+	+	()	-
High Salt Caustic Soda:				
Sodium Chloride as NaCl	+	-	-	+
Sodium Chlorate as NaClO ₃		+/-	+	
Sodium Sulphate as Na ₂ SO ₄	_	-	(-)	+

Table 9: comparison determinations against the standard

() the average was below the application range of the reference method

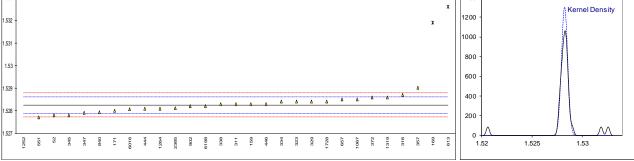

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

- ++: group performed much better than the reference test method
- + : group performed better than the reference test method
- +/-: group performance equals the reference test method
- : group performed worse than the reference test method
- -- : group performed much worse than the reference test method
- n.e.: not evaluated

APPENDIX 1

Determination of Alkalinity as NaOH on sample #18155; results in %M/M

lab	method	value	mark	z(targ)	remarks
52	E291	50.37		0.65	
150	E291	50.41		0.81	
159	E291	50.23		0.09	
169	E291	50.30		0.37	
171					
311	E291	50.48		1.09	
316	INH-041	50.33	С	0.49	first reported: 38.971
319	INH-726	50.46		1.01	
323	E291	50.48		1.09	
329	E291	50.55		1.37	
334	E291	50.24		0.13	
338	E291	49.80		-1.63	
345	E291	49.6		-2.43	
347	D501A	49.70		-2.03	
348	E291	50.0605		-0.59	
357	E291	50.217		0.04	
372	E291	50.30		0.37	
391	E291	50.2		-0.03	
444	E291	50.19		-0.07	
446	E291	52.33	R(0.01)	8.49	
541					
551	E291	50.07		-0.55	
554	2201				
557					
562	INH-480	49.51		-2.79	
613	E291	50.13		-0.31	
657	E291	50.67		1.85	
840	E291	50.233		0.10	
902	E291	50.15		-0.23	
1067	E291	50.1		-0.43	
1158	E291	50.368		0.64	
1252	E291	50.38		0.69	
1264	E291	50.37		0.65	
1319	JIS K1200-2	50.283		0.30	
1373	0101112002				
1656					
1689	E291	50.68		1.89	
1728	L231	50.31		0.41	
1795	INH-3068	50.343		0.41	
2385	E291	50.245		0.34	
6016	UOP209	49.844		-1.46	
6198	GB/T4348.1	49.68			
0190	GD/14340.1	49.00		-2.11	
	normality	OK			
	normanty	35			
	outliers	1			
	mean (n)	50.208			
	st.dev. (n)				
		0.2838			
	R(calc.)	0.795			
	st.dev.(E291:18) R(E291:18)	0.25 0.70			
	IX(LZ31.10)	0.70			
52.5 T					2



Determination of Appearance on sample #18155;

lab	method	value	mark	z(targ)	remarks
52	D4176	Pass			
150	E2680	Fail			
159	D4176	clear			
169	D4176	CBFSM			
171	E2680	Pass			
311	E2680	pass			
316	Visual	Clear			
319					
323	E2680	clear & bright			
329	Visual	clear			
334	Visual	characteristique			
338	Visual	Clear & bright FFSM			
345	Visual	pass			
347					
348					
357	E2680	Pass			
372	E2680	Pass			
391					
444	E2680	Pass			
446	E2680	PASS			
541					
551	Visual	Pass			
554					
557					
562					
613	D2090	C&C			
657	E2680	Pass			
840	E2680	Pass			
902	E2680	Pass			
1067	Visual	Bright and Clear			
1158					
1252	Visual	Clear			
1264	Visual	Clear & bright			
1319	Visual	Clear liquid			
1373					
1656					
1689					
1728	Visual	CLEAR			
1795					
2385	Visual	clear, colourless			
6016					
6198	D4176	Fail			several black particulates found in the sample
	n	25 / 2			
	mean (n)	Pass/Clear / Fail			

Determination of Density at 20°C on sample #18155; results in kg/L

D4052	1.5278		z(targ)	
			-2.55	
D4052	1.5283		0.25	
D4052	1.5319	R(0.01)	20.41	
D4052	1.528	· · ·	-1.43	
		С		first reported: 1.5316
		U		
D4052				
D4052				
D 4050				
15012185				
5 / 2 5 2				
D4052		С		first reported: 1.531
D4052	1.5277		-3.11	
D4052	1.5326	ex	24.33	reported to have tested at 15°C instead of 20°C
D4052	1.52849		1.31	
D4052	1.52794		-1.77	
D4052	1.5282		-0.31	
ISO12185	1.5285		1.37	
ISO12185	1.5206	R(0.01)	-42.87	
D4052	1.5281	. ,	-0.87	
ISO12185	1.5286		1.93	
D4052	1.52842		0.92	
ISO12185				
		С		first reported: 4.5269
D4052	1.5282	Ũ	-0.31	
normality	OK			
n	26			
mean (n)	1.52826			
()				
	5.0000			
	D4052 INH-009 D4052 D4052 ISO12185 ISO12185 D4052 D4052 D4052 D4052 D4052 D4052 D4052 D4052 D4052 D4052 D4052 D4052 ISO12185 ISO12185 D4052 ISO12185	D4052 1.5283 INH-009 1.5287 D4052 1.5284 ISO12185 1.5284 ISO12185 1.5283 D4052 1.5284 ISO12185 1.5283 D4052 1.5278 D4052 1.5278 D4052 1.5279 D4052 1.5281 D4052 1.5281 D4052 1.5281 D4052 1.5281 D4052 1.5277 D4052 1.5277 D4052 1.52849 D4052 1.52849 D4052 1.52849 D4052 1.5281 D4052 1.5281 ISO12185 1.5285 ISO12185 1.5286 ISO12185 1.5281 ISO12185 1.52812 D4052 1.52812 D4052 1.52807 D4052 1.52807 D4052 1.52807 D4052 1.5282 ISO12185 1.5282 normality OK <	D4052 1.5283 INH-009 1.5287 C D4052 1.5284 D4052 1.5284 ISO12185 1.5284 ISO12185 1.5283 D4052 1.5278 D4052 1.5277 D4052 1.5281 D4052 1.5283 D4052 1.5281 D4052 1.5283 D4052 1.5281 D4052 1.5283 D4052 1.5281 D4052 1.5277 D4052 1.5277 D4052 1.52849 D4052 1.52849 D4052 1.52849 D4052 1.52849 D4052 1.52849 D4052 1.5281 ISO12185 1.5206 R(0.01) D4052 D4052 1.5281 ISO12185 1.5286 ISO12185 1.52812 D4052 1.52807 C D4052 ISO12185 1.5282 Normality OK	D4052 1.5283 0.25 INH-009 1.5287 C 2.49 D4052 1.5284 0.81 D4052 1.5284 0.81 ISO12185 1.5284 0.81 ISO12185 1.5284 0.81 ISO12185 1.5284 0.81 ISO12185 1.5283 0.25 D4052 1.5279 -1.99 D4052 1.52902 4.28 ISO12185 1.5286 1.93 D4052 1.5281 -0.87 D4052 1.5283 C 0.25 D4052 1.5283 C 0.25 D4052 1.5281 -0.87 D4052 1.5283 C 0.25 D4052 1.5284 1.31 D4052 1.5284 1.31 D4052 1.5285 1.37 D4052 1.5285 1.37 D4052 1.5285 1.37 D4052 1.5286 1.93 ISO12185 1.5286 1.93 D4052 1.5281

Determination of Iron as Fe on sample #18155; results in mg/kg

lab	method	value	mark	z(targ)	remarks
52	E291	0.3			
150	E291	0.6			
159	E291	0.43			
169	E291	0.398819			
171	E291	0.4			
311	E291	<0.01			
316	INH-043				
		0.28			
319	INH-104	1.38			
323	E291	0.6			
329					
334	E291	2.005	R(0.05)		
338	E291	1.0615			
345	E291	0.8			
347	E291	0.9			
348	E291	0.20			
357	E291	0.36			
372	E291	0.4			
391	E291	0.7			
444	E291	0.943			
446	E291	0.4			
541					
551	E291	0.6			
554	L291				
557	5004				
562	E291	1.2			
613	E291	0.12			
657	E291	0.9932			
840	E291	0.49			
902					
1067	E291	1.3			
1158	INH-3068	0.52			
1252	E291	0.019			
1264	E291	0.39			
1319	JIS K1200-6	0.27			
1373					
1656					
1689					
1728	E291	1.333			
1795	2231				
2385	E201				
	E291	<0,5			
6016					
6198					
		01/			
	normality	OK			
	n	28			
	outliers	1			
	mean (n)	0.621			
	st.dev. (n)	0.3824			
	R(calc.)	1.071			
	st.dev.(E291:18)	(0.0643)			
	R(E291:18)	(0.180)			Application range R(E291:18) = 4-30 mg/kg
	, , , , , , , , , , , , , , , , , , ,	· · ·			
2.5 T					1.2
2.5					1.2 Kernel Density
2					x '] // \
					0.8 -
1.5					
1 -					
0.5		۵ ۵ ۵	۸ ۸ ^۸ ۸		0.2 -
.					

 334 0 -1

Determination of Sodium Chloride as NaCl on sample #18155; results in mg/kg

lab	method	value	mark	z(targ)	remarks
52	In house	64		1.75	
150					
159	In house	58		0.45	
169	E1787	17.7045	R(0.01)	-8.30	
171	E291	61	()	1.10	
311	INH-554	57		0.23	
316	INH-044	58.1		0.47	
319	INH-269	56.7		0.17	
323	E1787	46	С	-2.16	first reported: 32
329	E291	53	C C	-0.64	first reported: 32
334	E1787	55	Č	-0.20	first reported: 76.4
338	21101		U		
345					
347					
348	E291	40.8004		-3.29	
357	E291	< 100			
372	E291	<100			
391	E1787	54		-0.42	
444				-0.42	
446	E291	110	R(0.01)	11.73	
541	L231		1((0.01)		
551	E291	<100			
554	L231				
557					
562					
613	E291	70		3.05	
657	E291				
840	ISO6227	52.38		-0.77 -2.37	
902	E1787	45.0 60	С		first reported: 26
1067	E291		C	0.88 0.66	first reported: 36
1158	E291	59 56.6		0.88	
1252	E1787			0.14	
1252	E291	59 61			
1319	JIS K1200-3-2	61 54.9		1.10	
1373	JIS K1200-3-2	54.9 		-0.23	
1656					
1689					
1728		 50		-1.29	
	E204				
1795 2385	E291 E1787	59.41 55.7		0.75 -0.05	
2385 6016	LITOT			-0.05	
6198					
0190					
	normality	cuspost			
	n	suspect 23			
	outliers	23			
	mean (n)	2 55.939			
	st.dev. (n)	6.3326 17.731			
	R(calc.)				
	st.dev.(E1787:16)	4.6071			Compare D/E201:19) 15
	R(E1787:16)	12.9			Compare R(E291:18) = 15
¹¹⁵ T					x 0.08
105 -					Kernel Density
95 -					
85 -					0.06 -
75 -					0.05 -
65 -					<u> </u>
55		<u>A</u>	<u> </u>	۵ ۵ ۵	
	<u>م م م م</u>				0.03 -
45	<u> </u>				0.02 -
35 -					
25 -					

Determination of Sodium Chlorate as NaClO $_3$ on sample #18155; results in mg/kg

lab	method	value	mark	z(targ)	remarks	
52	In house	<10	mark	_(tai g)	Tomarito	
150						
159	D2202	4.4		1.06		
169	E291	2.1		-0.09		
171	INH-1112	43330	G(0.01)	21663.86		
311						
316	INH-075	1.2		-0.54		
319	INH-888	1.60		-0.34		
323						
329						
334 338		3.7		0.71		
345						
347						
348						
357						
372						
391						
444						
446						
541			0(0.04)			
551	NBR9851	95.4	G(0.01)	46.56		
554 557						
562						
613						
657	INH-134	2.927		0.33		
840	INH-61112	1.38		-0.45		
902						
1067	E291	12	G(0.01)	4.86		
1158						
1252	la havaa	3		0.36		
1264 1319	In house In house	1.0 1.4		-0.64 -0.44		
1373	III HOUSE	1.4		-0.44		
1656						
1689						
1728						
1795						
2385						
6016						
6198						
	normality	OK				
	n	10				
	outliers	3				
	mean (n)	2.271				
	st.dev. (n)	1.1705				
	R(calc.)	3.277				
	st.dev.(E1787:16)	2				
	R(E1787:16)	5.6				
[
14						0.4 Kernel Density
12 -					x	0.35 -
10 -						0.3 -
						0.25 -
8 -						0.2 -
6						
4 -					۵	0.15 -
1			۵ ۵	Δ		0.1 -
2	۵ ۵ ۵	Δ				0.05 -
Δ	-					

Λ

0 <u>|</u> -10

Determination of Sodium Sulphate as Na₂SO₄ on sample #18155; results in mg/kg

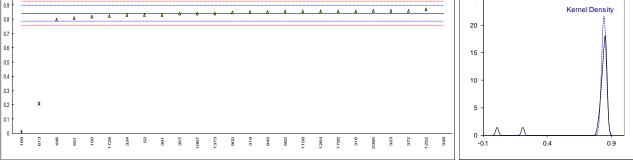
		-			<u> </u>	
lab	method	value	mark	z(targ)	remarks	
52	E291	<20				
150	In house					
159 169	In house E1787	10 11.940		-0.20 -0.02		
103				-0.02		
311	E291	<40				
316	INH-073	7.269		-0.45		
319	INH-862	11.4		-0.07		
323	E1787	<10				
329	F4707					
334 338	E1787	25.8		1.24		
345						
347						
348						
357						
372	E291	<40				
391						
444						
446 541						
551	NBR15132	<10				
554	HBITTO TOL					
557						
562						
613						
657	E291	10.79		-0.13		
840 902	E291 E1787	17.8 17	С	0.51 0.44	first reported: 12	
1067	E291	< 40	U		liist reported. 12	
1158						
1252	E1787	1		-1.02		
1264	E291	10.0		-0.20		
1319	JIS K1200-4	14.4		0.20		
1373 1656						
1689						
1728						
1795						
2385	E1787	8.9		-0.30		
6016						
6198						
	normality	suspect				
	n	12				
	outliers	0				
	mean (n)	12.192				
	st.dev. (n)	6.1587				
	R(calc.)	17.244				
	st.dev.(E1787:16) R(E1787:16)	11 30.8				
	N(E1/07.10)	30.0				
50 T						0.09
45						0.09 0.08 - Kernel Density
40 -						
35						
30 -						0.06 -
25 -					٨	0.05 -
20 -						0.04 -

0.03

0.02

0.01

0 ∔ -10


ò

30 40

Δ

Determination of Sodium Chloride as NaCl on sample #18156; results in %M/M

lab	method	value	mark	z(targ)	remarks
52	E291	0.83		-0.43	
150	E1787	0.8193		-0.80	
159					
169	E291	0.0096	R(0.01)	-29.14	
171					
311					
316	INH-044	0.856		0.48	
319	INH-269	0.852		0.34	
323	E291	0.86		0.62	
329					
334	E291	0.8286	С	-0.48	first reported: 8286.4%M/M
338					•
345					
347					
348	E291	12.9726	R(0.01)	424.56	
357	E291	0.839		-0.11	
372	E291	0.86		0.62	
391	E291	0.8307		-0.41	
444	2201				
446	E291	0.798		-1.55	
541	2201				
551	E291	0.81		-1.13	
554	2201				
557					
562	INH-632	0.854	С	0.41	first reported: 0.77
613	E291	0.21	R(0.01)	-22.13	
657	L201		1((0.01)		
840	E291	0.852		0.34	
902	E1787	0.846	С	0.13	first reported: 0.513
067	E291	0.839	0	-0.11	
158	E291	0.855		0.45	
252	E291	0.85		0.43	
264	E291	0.855		0.37	
319	L291	0.855		0.45	
373	INH-005	0.84		-0.08	
656	1111-005				
689					
728		0.821		-0.74	
795	E291	0.855		0.45	
2385	E291	0.8594	С	0.40	reported: 8594%M/M (probably a unit error?)
5016	L231		C	0.00	
5198					
0190					
	normality	OK			
	normality	22			
	outliers		cniko:		
	mean (n)	3 0.8423	<u>spike:</u> 0.8947	See §4.1	
	· · /		0.8947	See 94.1	
	st.dev. (n)	0.01850			
	R(calc.)	0.0518			
	st.dev.(E291:18)	0.02857			
	R(E291:18)	0.08			

Determination of Sodium Chlorate as NaClO3 on sample #18156; results in %M/M

lab	method	value	mark	z(targ)	remarks			
52	In house	0.075		-4.77				
150	E1787	0.0813		-3.13				
159	D2022	0.096		0.71				
169	E291	0.07	G(0.05)	-6.08				
103	L231		0(0.05)	-0.00				
311				4.07				
316	INH-075	0.110		4.37				
319	INH-888	0.09785		1.20				
323								
329								
334		0.0948	С	0.40	first reported:	948%M/M		
338								
345								
347								
348								
357								
372								
391								
444								
446								
541								
551	NBR9851	0.100		1.76				
554								
557								
562								
613								
657								
840	INH-61112	0.09827		1.31				
902								
1067	E291	0.085		-2.16				
1158								
1252		0.0917		-0.41				
1264	In house	0.0960		0.71				
1319								
1373								
1656								
1689								
1009								
1728								
1795								
2385								
6016								
6198								
	normality	OK						
	n	11						
	outliers	1	<u>spike:</u>					
		0.0933	0.1009	See §4.1				
	mean (n)		0.1009	See 94.1				
	st.dev. (n)	0.00968						
	R(calc.)	0.0271						
	st.dev.(Horwitz)	0.00383						
	R(Horwitz)	0.0107						
0.12 T							45	
0.12								Kernel Density
0.11 -						۵	40 -	
							35 -	$/\Lambda$
0.1						Δ	30 -	
0.1			۵ ۵	۸	Δ Δ	-		
0.09		۵					25 -	
0.00							20 -	// \
0.08	Δ	-						
0.00	۵						15 -	
0.07 ×	4						10 -	
U.U/							5 -	
0.06								
- <u>6</u>	150	1252	334	1264	319 840	316		0.05 0.1 0.15
				÷	-		11	
1							1.1	

Determination of Sodium Sulphate as Na₂SO₄ on sample #18156; results in %M/M

lab	method	value	mark	z(targ)	remarks	
52	E291	0.005	mark	-1.83	Tomarka	
150				-1.05		
159	In house	0.012		0.28		
169	E1787	0.0050552	23	-1.81	reported: 50.5523%M/M	(probably a unit error?)
171	E291	0.012		0.28	·	
311	E291	0.014		0.88		
316	INH-073	0.011		-0.02		
319	INH-862	0.01421		0.94		
323	E291	0.015		1.18		
329			-			
334	E291	0.0215	С	3.14	first reported: 214.5%M/	M
338						
345 347						
348						
357						
372	E291	<0.004				
391						
444						
446						
541						
551	NBR15132	0.007		-1.23		
554						
557						
562						
613						
657 840	E201			-2.76		
902	E291 E1787	0.0019 0.018	С	2.08	first reported: 0.012	
1067	E291	< 0.004	C	2.00	linst reported. 0.012	
1158	LZJI	< 0.004				
1252	E291	0.0044		-2.01		
1264	E291	0.0120		0.28		
1319						
1373						
1656						
1689						
1728						
1795	5004		0			and a block of the second ()
2385	E291	0.01304	С	0.59	reported: 130.4%M/M (p	robably a unit error?)
6016 6198						
0190						
	normality	ОК				
	n	15				
	outliers	0	<u>spike:</u>			
	mean (n)	0.0111	0.0305	See §4.1		
	st.dev. (n)	0.00545				
	R(calc.)	0.0153				
	st.dev.(E291:18)	0.00332				
	R(E291:18)	0.0093				
^{0.025} T						80
						70 Kernel Density
0.02						60 -
					Δ	
0.015				۵	۵	50 -
		. 4	۵ ۵	Δ		40 -
0.01		۵				30 -
		۵				
0.005 -	Δ Δ					20 -
Δ						10 -
	a a a	- *				
840	1252 52 169	3551 316 171	159	311	33 9 2 3 3 3 3 3 3 4 9 3 3 4 9 3 3 3 4 9 3 3 3 3	-0.01 0 0.01 0.02 0.03 0.04

APPENDIX 2

Number of participants per country

1 lab in ARGENTINA 1 lab in AUSTRALIA 2 labs in BELGIUM 3 labs in BRAZIL 1 lab in CANADA 1 lab in CHILE 2 labs in CHINA, People's Republic 1 lab in ESTONIA 1 lab in FINLAND 2 labs in FRANCE 1 lab in GERMANY 1 lab in ITALY 1 lab in JAPAN 1 lab in KAZAKHSTAN 4 labs in NETHERLANDS 1 lab in PORTUGAL 3 labs in ROMANIA 1 lab in SAUDI ARABIA 1 lab in SINGAPORE 3 labs in SPAIN 1 lab in TURKEY 1 lab in UNITED ARAB EMIRATES 3 labs in UNITED KINGDOM 4 labs in UNITED STATES OF AMERICA

1 lab in VIETNAM

APPENDIX 3

Abbreviations:

С	= final test result after checking of first reported suspect test result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner's outlier test
R(0.05)	= straggler in Rosner's outlier test
Е	= probably an error in calculations
U	= test result probably reported in a different unit
W	= test result withdrawn on request of participant
ex	= test result excluded from statistical evaluation
n.a.	= not applicable
n.e.	= not evaluated
n.d.	= not detected
fr.	= first reported
SDS	= Safety Data Sheet

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ASTM E178:02
- 3 ASTM E1301:95 (2003)
- 4 ISO 5725:86
- 5 ISO 5725, parts 1-6:94
- 6 ISO 13528:05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367:96
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 ASTM E346:03e1
- 14 Analytical Methods Committee Technical brief, No 4 January 2001.
- 15 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry 2002, Analyst 2002, <u>127</u>, 1359-1364
- 16 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, *Technometrics*, <u>25(2)</u>, 165-172, (1983)