Results of Proficiency Test Chlorinated Phenols in leather April 2018

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Author:	ing. R.J. Starink
Corrector:	dr. R.G. Visser
Report:	iis18A07Cl

July 2018

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER DETERMINATION	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	8
4.3	COMPARISON OF THE PROFICIENCY TEST OF APRIL 2018 WITH THE PREVIOUS PT	9
4.4	EVALUATION ANALYTICAL DETAILS	9
5	DISCUSSION	10
6	CONCLUSION	10

Appendices:

1.	Data and statistical results	11
2.	Details of the test methods used by the participants	19
3.	Number of participants per country	21
4.	Abbreviations and literature	22

1 INTRODUCTION

Products containing Pentachlorophenol (PCP) may form highly toxic substances when they are incinerated. PCP is also a suspected/probable carcinogen. Since the 1990's, many countries have adopted environmental standards and requirements restricting the use of harmful chemicals in the production of textiles and leather consumer products. Laws and regulations impose some of these standards and requirements. Pentachlorophenol is an anti-fungal agent that has been restricted for sale in preparations since 1991, with a maximum permissible amount of 1000 mg/kg. However, in some regions (such as Germany), more stringent limits (a maximum of 5 mg/kg) are placed on its inclusion in finished materials and this lower limit is found in 94/783/EC.

Since 2016, the The Institute for Interlaboratory Studies organizes a proficiency scheme Pentachlorophenol (PCP) and Tetrachlorophenols (TeCP) in Leather. In the annual proficiency test program of 2017/2018, it was decided to continue the PT on PCP and TeCP in Leather and extend it with TCP (Trichlorophenols).

In this interlaboratory study 80 laboratories in 26 different countries registered for participation. See appendix 3 for the number of participants per country. In this report, the results of the 2018 proficiency test are presented and discussed. This report is also available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies in Spijkenisse was the organiser of the proficiency test. Sample analyses for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC 17025 accredited laboratory. Due to limited availability of samples positive on PCP, TCEP and/or TCP on leather, it was decided to send one leather sample which was positive on PCP and TCP. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC 17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on a regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of March 2017 (iis-protocol, version 3.4). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A batch of brown leather positive on Chlorophenols (PCP and 2,4,6-TCP) was obtained from a third party laboratory. The bulk was cut into pieces. Out of this batch, after mixing well, 100 subsamples of 3 grams each were packed and labelled #18550. The homogeneity the subsamples #18550 was checked by the determination of PCP on eight stratified randomly selected samples. The determination is performed in accordance with an in-house test method for PCP. See the following table for the test results.

	PCP in mg/kg
Sample #18550-1	7.35
Sample #18550-2	7.45
Sample #18550-3	7.63
Sample #18550-4	7.75
Sample #18550-5	7.25
Sample #18550-6	7.43
Sample #18550-7	7.42
Sample #18550-8	7.25

Table 1: homogeneity test results of subsamples #18550

From the above test results of the homogeneity test, the repeatability was calculated and compared with 0.3 times the target reproducibility in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	PCP in mg/kg
r (observed)	0.49
Target	iis-memo (lit.18)
0.3 x R (Target)	1.69

Table 2: evaluation of the repeatability of subsamples #18550.

The calculated repeatability of Pentachlorophenol (PCP) was in agreement with 0.3 times the target reproducibility. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one sample of approx. 3 grams, labelled #18550 was sent on April 4, 2018.

2.5 ANALYSES

The participants were asked to determine the concentration of Pentachlorophenol (PCP), 2,3,4,5-Tetrachlorophenol, 2,3,4,6-Tetrachlorophenol, 2,3,5,6-Tetrachlorophenol, 2,3,4-Trichlorophenol, 2,3,5-Trichlorophenol, 2,3,6-Trichlorophenol, 2,4,5-Trichlorophenol, 2,4,6-Trichlorophenol, 3,4,5-Trichlorophenol on sample #18550 applying the analysis procedure that is routinely used in the laboratory.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the results, but report as much significant figures as possible. It was also requested not to report 'less than' results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form, the reporting units are given as well as the reference test methods that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the results of the individual laboratories were gathered via the data entry portal www.kmpd.co.uk/sgs-iis-cts/. The reported test results are tabulated per sample and determination in appendix 1 of this report. The laboratories are presented by the code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment.

Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyses). Additional or corrected test results are used for the data analysis and the original results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organisation of this proficiency test wast the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of March 2017 (iis-protocol, version 3.4).

For the statistical evaluation, the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

According to ISO 5725 the original test results per determination were submitted subsequently to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs's test and by R(0.01) for the Rosner's. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. The Kernel Density Graph is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the target reproducibility by division with 2.8. In case no literature reproducibility was available, other target values are used.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used. This should be done in order to evaluate whether the reported test results are fit-for-purpose.

The z-scores were calculated according to:

z (target) = (test result - average of PT) / target standard deviation

The z (target) scores are listed in the result tables of appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore the usual interpretation of z-scores is as follows:

 $\begin{aligned} |z| &< 1 \text{ good} \\ 1 &< |z| &< 2 \text{ satisfactory} \\ 2 &< |z| &< 3 \text{ questionable} \\ 3 &< |z| & \text{unsatisfactory} \end{aligned}$

4 EVALUATION

During the execution of this proficiency test some serious problems occurred with the dispatch of the samples. A number of participants was not able to report the test results before the final reporting date. Finally, eight participants reported the test results after the final reporting date and eight other participants did not report any test results at all. In total 72 laboratories reported 127 numerical test results. Observed were 4 statistical outlying test results, which is 3.1%. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

For Pentachlorophenol (PCP), both existing test methods (LFGB 82.02-8 and ISO17070, the latter test method superseding DIN53313:1996 and DIN14494:2003), mention identical precision data. Most participating laboratories in this PT reported to have used one of these two test methods. In a recent study (lit. 18), in which reproducibilities of the PCP determination on textile over 18 PTs over 10 years were compared, it was concluded that the published reproducibility of these test methods is in practice too strict and a more

realistic target reproducibility was determined. This target reproducibility has been used in this PT to check the homogeneity of the sub samples of #18550 and to calculate the z-scores of the reported test results.

For Trichlorophenols no precision data are available. Therefore, also for 2,4,6trichlorophenol the reproducibility from the iis memo on PCP is used as target reproducibility.

4.1 EVALUATION PER DETERMINATION

- <u>PCP</u>: The determination of this component was not problematic. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the estimated reproducibility calculated from the iis memo (lit.18).
- <u>2,4,6-TCP</u>: The determination of this component was not problematic. One statistical outlier was observed. However, the calculated reproducibility after rejection of the statistical outlier is in agreement with the estimated reproducibility calculated from the iis memo (lit.18).

<u>TeCPs and TCPs</u>: Sample #18550 did contain very little of the other requested components, which concentrations were near or below the detection limit. Therefore, no significant conclusions were drawn.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the estimated target reproducibilities (see § 4.1) and the reproducibilities as found for the group of participating laboratories. The number of test results, the average test results, the calculated reproducibilities (standard deviation*2.8) and the target reproducibilities are compared in the next table:

	unit	n	average	2.8 x sd	R (target)
PCP	mg/kg	67	5.69	4.14	4.48
2,4,6-TCP	mg/kg	56	1.37	1.10	1.34

Table 3: reproducibility of chloro phenols on sample #18550

Without further statistical calculations, it can be concluded that the group of participating laboratories has no difficulties with the determination of PCP and 2,4,6-TCP. See also the discussion in paragraphs 4.1 and 6.

4.3 COMPARISON OF THE PROFICIENCY TEST OF APRIL 2018 WITH THE PREVIOUS PT

	April 2018	April 2017	April 2016
Number of reporting labs	72	72	74
Number of results reported	127	107	110
Number of statistical outliers	4	2	3
Percentage outliers	3.1%	1.9%	2.7%

Table 4: Comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the proficiency test was compared expressed as uncertainty of the PTs, see table below.

	April 2018	April 2017	April 2016	RSD (iis)
				see lit 18
PCP	26%	36%	41%	25%-35%
2,4,6-TCP	29%	n.e.	n.e.	25%-35%

Table 5: Comparison of uncertainties in iis proficiency tests

4.4 EVALUATION ANALYTICAL DETAILS

For this Proficiency Test some analytical details were requested (see appendix 2). Based on the answers given by the participants the following can be summarized: Fifty-four of the participants answered to be ISO/IEC17025 accredited for the determination of Chlorophenols in leather.

Fifty-six participants tested the leather samples according to the test method ISO17070 or LFGB B82.02.8, nine participants used an in house method and fourteen did not report the test method.

Almost all reporting laboratories did use a test portion between 0.5 - 2.0 grams. One mentioned to have use less material (0.3 gram) and another used more testing material for intake (2.5 gram).

Most of the laboratories mentioned to have cut the sample in smaller pieces before use. Thirthy-four reported to have used steam distillation to release the Chlorophenols from the leather. Twenty-two used an extraction method (with or without KOH)

Not all laboratories followed identical procedures for extracting the PCP from the leather. Test methods ISO17070 and LFGB 82.02-8 describe a similar sample pathway to determine PCP: steam distillation to extract the phenols from leather, liquid to liquid extraction to get the phenols in a hydrophobic solvent and acetylation of the phenols (with a mechanical shaker) to separate the phenols easier by the gas chromatograph. Remarkably only 34 of the 56 laboratories, which reported to have used ISO17070 or LFGB B82.02.8, used steam distillation.

The observed variation in this PT could not be explained from the reported analytical details. It is remarkable that for the leather sample used in this proficiency test, none of the reported analytical details appears to have a significant influence on the test results.

5 DISCUSSION

In table 6 the limits mentioned in standard 100 by OEKO-TEX are mentioned. It was noticed that not all participants would make identical decisions about the acceptability of the leather for Chlorophenols.

Chlorinated phenols, mg/kg	Baby clothes	In direct skin	With no direct	Decoration
		contact	skin contact	material
Pentachlorophenol PCP	0.05	0.5	0.5	0.5
Tetrachlorophenols (TeCP), sum	0.05	0.5	0.5	0.5
Trichlorophenols (TCP), sum	0.2	2.0	2.0	2.0

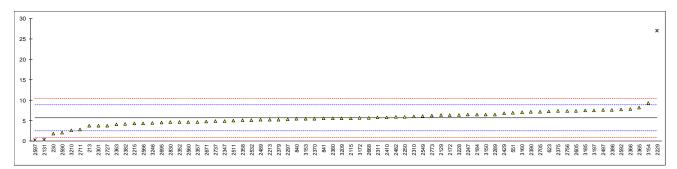
Table 6: Ecolabelling Standard and Requirements Oko-tex for Textiles in EU

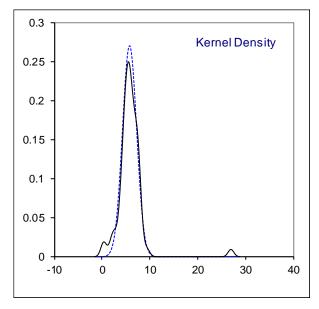
For the determination of PCP, three participants would accept the sample for all categories except for baby clothes. Two laboratories reported a test result smaller than 0.5 mg/kg and the third reported 'nd'. All other laboratories would reject the sample for containing too much PCP.

For the determination of TCPs, four participants would accept the sample for all categories. One laboratory reported a test result smaller than 0.2 mg/kg and three others reported 'nd'. Five participants would reject this sample for all categories as they reported a test result larger than 2.0 mg/kg. All other participants would accept the sample for all categories except for baby clothes.

6 CONCLUSION

Although, it can be concluded that the majority of the participants has no problem with the determination of PCP or 2,4,6-TCP in the sample of this PT, each participating laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary.

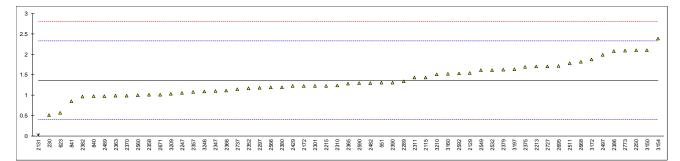

Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and thus increase of the quality of the analytical results.

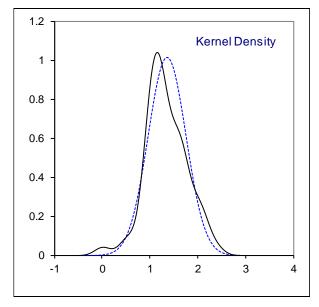

APPENDIX 1

Determination of Pentachlorophenol (PCP) on sample #18550; results in mg/kg

					ple #18550; results in mg/kg
212	ISO17070	value	mark	z(targ) -1.22	remarks
213 230	ISO17070 ISO17070	3.74 1.85		-1.22 -2.40	
551	In house	6.94		0.78	
623	ISO17070	7.28		1.00	
840		5.42		-0.17	
841	LFGB B82.02.8	5.53		-0.10	
2115	ISO17070	5.623		-0.04	
2129	ISO17070	6.38		0.43	
2131	In house	0.335	R(0.05)	-3.34	
2137	la havaa				
2172 2184	In house LFGB B82.02.8	6.420 6.51		0.46 0.51	
2213	ISO17070	5.2		-0.30	
2215	In house	4.33		-0.85	
2229	ISO17070	26.95	C,R(0.01)	13.28	First reported 19.39
2247	ISO17070	6.4695		0.49	
2250	ISO17070	5.9		0.13	
2289	ISO17070	6.53		0.53	
2297	ISO17070	5.31		-0.24	
2301 2310	LFGB B82.02.8 ISO17070	3.75 6.02		-1.21 0.21	
2310	ISO17070	5.757		0.21	
2347	ISO17070	4.95		-0.46	
2350					
2352	ISO17070	4.637		-0.66	
2357	ISO17070	4.699		-0.62	
2358	ISO17070	5.122		-0.35	
2363 2365	ISO17070 ISO17070	4.06 8.136		-1.02 1.53	
2365	ISO17070	7.890		1.33	
2369	10011010				
2370	ISO17070	5.495		-0.12	
2375	ISO17070	7.40		1.07	
2379	ISO17070	5.26		-0.27	
2380	LFGB B82.02.8	5.555		-0.08	
2382	ISO17070	4.181		-0.94	
2386 2390	In house ISO17070	7.62 7.120		1.21 0.90	
2390 2410	ISO17070	5.84		0.90	
2429	In house	6.771		0.68	
2455	ISO17070	nd			
2482	ISO17070	5.868		0.11	
2489	ISO17070	5.19		-0.31	
2492	10047070				
2497 2511	ISO17070 LFGB B82.02.8	7.561 4.990		1.17 -0.43	
2532	ISO17070	5.148		-0.43	
2549		6.14		0.28	For KOH: 9.51 (z-score 2.27)
2560	ISO17070	4.695		-0.62	
2561					
2566	LFGB B82.02.8	4.36		-0.83	
2590	ISO17070	2.111		-2.23	
2592 2597	ISO17070 ISO17070	7.72 0.21	R(0.05)	1.27 -3.42	
2605	ISO17070	0.21 7.431	N(0.03)	-3.42 1.09	
2656					
2668		5.74		0.03	For KOH 10.28 (z-score 2.75)
2671		4.82		-0.54	
2695	ISO17070	4.509		-0.74	
2703	In house				
2705 2711	In house	7.2 2.80		0.95 -1.80	
2711 2727	ISO17070 ISO17070	2.80 3.75		-1.80	
2737	In house	4.896		-0.49	
2756	ISO17070	7.4	С	1.07	First reported 16.18
2773	ISO17070	6.2		0.32	
2830		4.621		-0.67	
3146	10017070	 6 50		0.52	
3150 3153	ISO17070 LFGB B82.02.8	6.52 5.46		0.52 -0.14	
3153	ISO17070	5.46 9.34		-0.14 2.28	
	ISO17070	7.036		0.84	
3160					
3160 3163					
3163 3172	KS K0733	5.731		0.03	
3163	KS K0733 ISO17070 ISO17070				

lab	method	value	mark	z(targ)	remarks	
3209	ISO17070	5.6020		-0.05		-
3210	In house	2.58		-1.94		
3228	ISO17070	6.42		0.46		
3246	ISO17070	4.45		-0.77		
	normality	ОК				
	n	67				
	outliers	3				
	mean (n)	5.686				
	st.dev. (n)	1.4766				
	R(calc.)	4.135				
	st.dev.(iis, see lit 18)	1.6009				
	R(iis, see lit 18)	4.483				
Compa	are					
	R(ISO17070:15)	1.834				
	R(Horwitz)	1.961				





Determination of 2,4,6-Trichlorophenol (2,4,6-TCP) on sample #18550; results in mg/kg

lab	method	value	mark	z(targ)	remarks
213 230	19017070	 0.51		-1.80	
230 551	ISO17070 In house	1.30		-1.80 -0.14	
623	ISO17070	0.57		-1.67	
840		0.98		-0.81	
841	LFGB B82.02.8	0.85		-1.09	
2115 2129	ISO17070 ISO17070	1.431 1.54		0.13 0.36	
2123	In house	0.025	R(0.01)	-2.82	
2137					
2172	In house	1.222		-0.31	
2184	ISO17070	 1.7		0.70	
2213 2215	In house	1.23		-0.29	
2229					
2247	ISO17070	1.0524		-0.66	
2250 2289	ISO17070	2.1 1.34		1.54 -0.06	
2209	ISO17070 ISO17070	1.34		-0.08	
2301	LFGB B82.02.8	1.23		-0.29	
2310	ISO17070	1.24		-0.27	
2311	ISO17070	1.426		0.12	
2347 2350	ISO17070	1.1 		-0.56	
2352	ISO17070	1.164		-0.43	
2357	ISO17070	1.075		-0.61	
2358	ISO17070	1.006		-0.76	
2363 2365	ISO17070 ISO17070	0.99 1.285		-0.79 -0.17	
2366	ISO17070	1.110		-0.54	
2369					
2370 2375	ISO17070 ISO17070	0.9928 1.69		-0.79 0.68	
2375	ISO17070	1.62		0.88	
2380	LFGB B82.02.8	1.1905		-0.37	
2382	ISO17070	0.962		-0.85	
2386 2390	In house ISO17070	2.08 1.307		1.49 -0.13	
2330	13017070		W	-0.15	Result with drawn, reported 2.59
2429	In house	1.221		-0.31	
2455	ISO17070	nd			
2482 2489	ISO17070 ISO17070	1.299 0.98		-0.14 -0.81	
2492					
2497	ISO17070	1.982		1.29	
2511 2532	LFGB B82.02.8	1.781		0.87 0.52	
2532 2549	ISO17070	1.616 1.61	С	0.52	First reported ND. For KOH 2.28 (z-score 1.91)
2560	ISO17070	0.994	-	-0.78	
2561					
2566 2590	LFGB B82.02.8 ISO17070	1.19 1.296		-0.37 -0.15	
2590	ISO17070	1.53		0.13	
2597					
2605					
2656 2668		1.81		0.93	For KOH 2.31 (z-score 1.98)
2671		1.01		-0.75	
2695	ISO17070	1.712		0.72	
2703 2705					
2705 2711					
2727	ISO17070	1.70		0.70	
2737	In house	1.142		-0.47	
2756 2773	ISO17070 ISO17070	ND 2.09		1.52	
2830	10011010	2.09 ND			
3146					
3150	ISO17070	2.10		1.54	
3153 3154	ISO17070	2.38		2.12	
3160	ISO17070	1.519		0.32	
3163					
3172 3185	KS K0733	1.877		1.07	
3185 3197	ISO17070	1.63		0.55	
5.51				0.00	

				4	
lab	method	value	mark	z(targ)	remarks
3209	ISO17070	1.0321		-0.70	
3210	In house	1.51		0.30	
3228					
3246	ISO17070	1.09		-0.58	
	normality	ОК			
	n	56			
	outliers	1			
	mean (n)	1.3674			
	st.dev. (n)	0.39417			
	R(calc.)	1.1037			
	st.dev.(iis, see lit 18)	0.476732			
	R(iis, see lit 18)	1.3348			
Comp	are				
	R(ISO17070:15)	0.2869			
	R(Horwitz)	0.5844			

Determination of Tetra- and Tri-Chlorophenols on sample #18550; results in mg/kg

lab	2,3,4,5TeCP	2,3,4,6TeCP	2,3,5,6TeCP	2,3,4-TCP	2,3,5-TCP	2,3,6-TCP	2,4,5-TCP	3,4,5-TCP
213								
230								
551								
623	n.d.							
840	not detected	not detected	not detected	not netected	not detected	not detected	not detected	not detected
841	n.d							
2115		0.036						
2129								
2131				0.08				
2137								
2172								
2184 2213	 <0.05	 <0.05	<0.05	 <0.05	<0.05	 <0.05	 <0.05	<0.05
2215	<0.05 ND							
2229								
2247	ND							
2250								
2289	ND							
2297	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2301	ND							
2310	not detected	not detected	not detected	not netected	not detected	not detected	not detected	not detected
2311	not detected	not detected	not detected	not netected	not detected	not detected	not detected	not detected
2347	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
2350								
2352								
2357	ND							
2358 2363	< 0.05 ND							
2363	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2366	ND							
2369								
2370	n.d.							
2375								
2379	not detected	not detected	not detected	not netected	not detected	not detected	not detected	not detected
2380								
2382								
2386	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
2390	N.D	N.D	N.D	N.D	0.299	N.D	N.D	N.D
2410 2429	ND							
2429	nd							
2482								
2489	ND							
2492								
2497			0.0281					0.0122
2511								
2532	not detected	not detected	not detected	not netected	not detected	not detected	not detected	not detected
2549	ND							
2560								
2561 2566	ND							
2590								
2592								
2597								
2605	ND							
2656								
2668	not detected	not detected	not detected	not netected	not detected	not detected	not detected	not detected
2671								
2695								
2703								
2705								
2711								
2727 2737								
2756	ND							
2730	ND							
2830	ND							
3146								
3150								
3153								
3154								
3160								
3163								
3172 3185	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 	< 0.05	< 0.05
3185 3197	ND							
5157								

lab	2,3,4,5TeCP	2,3,4,6TeCP	2,3,5,6TeCP	2,3,4-TCP	2,3,5-TCP	2,3,6-TCP	2,4,5-TCP	3,4,5-TCP
3209								
3210	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
3228								
3246	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Determination of Other Chlorophenols and Orthophenylphenol on sample #18550; results in mg/kg

lab	Other CP	OPP
213		
230		
551		
623	n.d.	
840 841	 n.d	
2115	n.a 	19.9
2129		10.0
2131		
2137		
2172		
2184 2213	 <0.05	
2213	<0.05 ND	
2229		
2247	ND	8.97
2250		
2289	ND	
2297 2301		
2301		
2310	not detected	
2347	<0.5	
2350		
2352		
2357	ND	
2358 2363	< 0.05 ND	
2365		
2366	out of cap.	
2369		
2370	n.d.	
2375		
2379 2380	Not tested	
2380		
2386	<0,5	
2390		12.83
2410		
2429	ND	
2455 2482	nd 	
2482 2489		9.52
2492		
2497	35.11	10.55
2511		44.01
2532		11.31
2549 2560		19.78
2560 2561		
2566		
2590		
2592		
2597		
2605 2656		
2656		25.83
2671		OPP positive
2695		
2703	13.8	
2705		
2711 2727	 4.38	
2727 2737	4.38	
2756		
2773	ND	
2830	ND	
3146		
3150		
3153 3154		
3154		
3163		
3172		
3185		
3197		

lab	Other CP	OPP	
3209			
3210			
3228			
3246	n.d.		

APPENDIX 2 Details of the test methods used by the participants

		ISO17025	st methods used					
lab	Test methd	accr.	Sample prep.	Grain size	Release technique	Extraction technique	Sample intake	Remarks
213	ISO17070	No	Further Cut	•	Steam distillation		· ·	
230	ISO17070	Yes	Used as received		Steam distillation	Liquid liquid extraction	1-2 g	
551	In house						5	
623	ISO17070							
340		Yes	Further Cut	3x3mm	Other	Ultrasonic extraction		
841	LFGB B82.02.8							
115	ISO17070	Yes	Used as received		Steam distillation	Soxhlet / AES extraction	0.5 g	
129	ISO17070	Yes	Further Cut	5x5 mm	Steam distillation was skipped	Soxhlet / AES extraction	1,0 g	
131	In house		Used as received		Steam distillation		1	
137								
172	In house	Yes	Further Cut	3mm*3mm	Other	Ultrasonic extraction	0.3g	
184	LFGB B82.02.8	Yes	Used as received	3mm x 3mm	Steam distillation was skipped	Ultrasonic extraction	0.5g	
213	ISO17070	Yes	Further Cut	5 X 5 mm	Other	KOH extraction	0.5 gm	
-				57,01111			0.0 gm	
215	In house	Yes	Used as received	0mm*0mm	 Stoom distillation was akinned	Ultrasonic extraction	10	
229 247	ISO17070	No	Further Cut	2mm*2mm	Steam distillation was skipped	Ultrasonic extraction	1g 1.0010am	
	ISO17070	Yes	Further Cut	2mmx3mm	Steam distillation	Soxhlet / AES extraction	1.0010gm	
250	ISO17070	Yes	Used as received	F * F	Other	Ultrasonic extraction	0,5	
289	ISO17070	Yes	Further Cut	5mm*5mm	Steam distillation		1.0g	
297	ISO17070	Yes	Further Cut	2*2	Steam distillation	Liquid-liquid-extraction	1.0022	
301	LFGB B82.02.8	Yes	Further Cut	0.2 mmx0.2mm	Other	Ultrasonic extraction	1	
310	ISO17070	Yes	Further Cut	3mm * 3mm	Steam distillation	 Coutlet / AEC outroation	1 gram	
311	ISO17070	Yes	Further Cut	3mm x 3mm	Steam distillation	Soxhlet / AES extraction	0.5	
347	ISO17070	Yes	Further Cut	3mm*3mm	Steam distillation	Ultrasonic extraction		
350	10047070	No	Further Cut	0+0	Other	Ultrasonic extraction	0.5-	
352	ISO17070	Yes	Further Cut	2mm*2mm	Steam distillation	liquid-liquid extract	0.5g	
357	ISO17070	Yes	Further Cut	3mm*3mm	Steam distillation	Soxhlet / AES extraction	1.0	
358	ISO17070	Yes	Further Cut	3mm x 3mm	Steam distillation	Steam distillation	1.0 g	
363	ISO17070	Yes	Further Cut	3mm*3mm	Steam distillation	Other (mention in remarks)	1g	
365	ISO17070	Yes	Further Cut	3mm*3mm	Steam distillation	none	1g	
366	ISO17070	Yes	Further Cut	2mm*2mm	Steam distillation	shake bath	0.5g	
369								
370	ISO17070	Yes	Further Cut	3x3 mm	Steam distillation	Steam distillation	1 g	
375	ISO17070	Yes	Further Cut	6 x 6 mm	Steam distillation	Other (mention in remarks)	0.5 gr	
379	ISO17070	No	Further Cut	3 mm x 3 mm	Steam distillation	Liquid Liquid Extraction	1 g	
380	LFGB B82.02.8	Yes	Further Cut	3x3 mm	Other	Ultrasonic extraction	0.5040	
382	ISO17070	No	Further Cut	5*5mm	Steam distillation	Other (mention in remarks)	2.500	
386	In house	Yes	Further Cut	3mm x 3mm	Other	Ultrasonic extraction	0,5	
390	ISO17070	Yes	Further Cut	3 mm x 3mm	Other	Other (mention in remarks)	0.5 gm	
410	ISO17070	Yes	Used as received	NA	Steam distillation	Other (mention in remarks)	NA	
129	In house	Yes	Further Cut	5mm ¡Á5mm	Other	Other (mention in remarks)	1	
455	ISO17070		Used as received		Other	Ultrasonic extraction		
482	ISO17070	Yes	Further Cut	< 5 mm	Other	Extraction with 1M KOH	0,5	
489	ISO17070	Yes	Used as received		Steam distillation	Soxhlet / AES extraction	0.5029g	
492								
497	ISO17070	Yes	Further Cut		Other	Ultrasonic extraction	1	
511	LFGB B82.02.8							

		ISO17025						
lab	Test methd	accr.	Sample prep.	Grain size	Release technique	Extraction technique	Sample intake	Remarks
2532	ISO17070							
2549		Yes	Further Cut	2 mm X 2mm	Other	KOH extraction	0.5	
2560	ISO17070	Yes	Further Cut	6mm X 6mm	Other	KOH extraction	0.503	
2561								
2566	LFGB B82.02.8	Yes	Further Cut	5mmx5mm	Other	Ultrasonic extraction	1.0077gm	
2590	ISO17070	Yes	Further Cut	5mm x 5mm	Steam distillation	Ultrasonic extraction	1 g	
2592	ISO17070	Yes	Used as received	4 mm	Steam distillation	Other (mention in remarks)	1 g	
2597	ISO17070							
2605	ISO17070	Yes	Further Cut	2mm*3mm	Steam distillation	Liquid-Liquid extraction	0.5grams	
2656								
2668		Yes	Further Cut	2 mm X 2 mm	Other	KOH extraction	0.5 grams	
2671		No	Further Cut	5x5 mm	Other	Ultrasonic extraction	2	
2695	ISO17070	No	Further Cut	1 mm	Steam distillation	Orbital Shaker	1 g	
2703		Yes	Further Grinded		Steam distillation			
2705	In house	Yes	Used as received		Steam distillation was skipped	Soxhlet / AES extraction	1 g	
2711	ISO17070	No	Further Cut	about 3 x 3 mm	Steam distillation		1	
2727	ISO17070	Yes	Further Cut	2x2mm	Steam distillation		1g	
2737	In house	Yes	Further Cut	3mm*3mm	KOH extraction in oven	1 gram	KOH extraction in oven	
2756	ISO17070	No	Used as received	AS IT IS	Steam distillation	Soxhlet / AES extraction	1.00	
2773	ISO17070	Yes	Further Cut		Steam distillation		1.0	
2830								
3146								
3150	ISO17070	Yes	Further Cut	3 * 3 mm	Other	Extraction with KOH (16h at 90°C)	0,5	
3153	LFGB B82.02.8	Yes	Further Cut	3mm X 3mm	Steam distillation	4b: Liquid-Liquid extraction	0.5g	
3154	ISO17070	Yes	Used as received			Ultrasonic extraction		
3160	ISO17070	No	Further Cut	3x3 mm	Steam distillation	4b. Liquid-liquid extraction	1	
3163								
3172	KS K0733	Yes	Further Cut	2x2mm	Other	Ultrasonic extraction	0.5	
3185	ISO17070	Yes	Further Cut	5mm * 5mm	Steam distillation		0.5g ~ 1.0g	
3197	ISO17070	Yes	Used as received	5 mm * 5 mm	Steam distillation	Soxhlet / AES extraction	1 g	
3209	ISO17070	Yes	Further Cut	<2*2mm	Steam distillation was skipped	Ultrasonic extraction	1g	
3210	In house	Yes	Further Cut	20 mm ²	Steam distillation was skipped	Ultrasonic extraction	1.000	
3228	ISO17070	Yes	Further Cut	3mm*3mm	Steam distillation was skipped	Ultrasonic extraction	0.5g	
3246	ISO17070	Yes	Further Cut	4x4 mm	Other	Extraction by KOH/ Heat 90oC, 16h	0.5 g	
						,	5	

APPENDIX 3

Number of participants per country

- 2 labs in BANGLADESH
- 1 lab in BRAZIL
- 20 labs in CHINA, P.R. of
 - 1 lab in ETHIOPIA
- 2 labs in FRANCE
- 7 labs in GERMANY
- 4 labs in HONG KONG
- 11 labs in INDIA
- 2 labs in INDONESIA
- 7 labs in ITALY
- 1 lab in LUXEMBOURG
- 1 lab in MAURITIUS
- 2 labs in MOROCCO
- 1 lab in NETHERLANDS
- 1 lab in PAKISTAN
- 1 lab in PORTUGAL
- 3 labs in SOUTH KOREA
- 1 lab in SPAIN
- 1 lab in SWITZERLAND
- 1 lab in TAIWAN R.O.C.
- 1 lab in THAILAND
- 1 lab in TUNISIA
- 2 labs in TURKEY
- 1 lab in U.S.A.
- 2 labs in UNITED KINGDOM
- 3 labs in VIETNAM

APPENDIX 4

Abbreviations:

- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = utlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- R(0.01) = outlier in Rosner's outlier test
- R(0.05) = straggler in Rosner's outlier test
- n.a. = not applicable
- n.e. = not evaluated
- n.d. = not detected
- W = test result withdrawn on request of participant
- ex = test result excluded from statistical evaluation
- fr. = first reported test result

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, March 2017
- 2 Öko-Tex Standard 100; January 2018
- 3 Directive 94/783/EC
- 4 Impacts of Environmental Standards and requirements in EU Countries, August 1999
- 5 Horwitz, Journal of AOAC International, <u>79 No.3</u> (1996)
- 6 P.L. Davies, Fr Z. Anal. Chem., <u>351</u>. 513. (1988)
- 7 W.J. Conover, Practical; Nonparametric Statistics, J. Wiley&Sons. NY. p.302. (1971)
- 8 ISO 5725:1986
- 9 ISO 5725. parts 1-6:1994
- 10 ISO105 E4:1994
- 11 ISO14184-1:1994
- 12 ISO13528:2005
- 13 M. Thompson and R. Wood, J. AOAC Int., <u>76</u>. 926. (1993)
- 14 Analytical Methods Committee Technical brief, No 4 January 2001.
- 15 The Royal Society of Chemistry 2002, Analyst 2002, <u>127</u>, 1359-1364, P.J. Lowthian and M. Thompson
- 16 Official Journal of the European Communities L133/29: May 2002
- 17 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, *Technometrics*, <u>25(2)</u>, 165-172, (1983)
- 18 MEMO iis: Precision data of OPP/PCP in textile, February 18, 2016
- 19 ISO17070:2015