# Results of Proficiency Test ortho- and para-Xylenes October 2016

Organised by: Institute for Interlaboratory Studies (iis)

Spijkenisse, the Netherlands

Author: ing. A.S. Noordman – de Neef

Correctors: dr. R.G. Visser & ing C.M. Nijsen – Wester

Report: iis16C08

## **CONTENTS**

| 1   | INTRODUCTION                                               | . 3 |
|-----|------------------------------------------------------------|-----|
| 2   | SET UP                                                     | . 3 |
| 2.1 | ACCREDITATION                                              | . 3 |
| 2.2 | PROTOCOL                                                   | . 3 |
| 2.3 | CONFIDENTIALITY STATEMENT                                  | . 3 |
| 2.4 | SAMPLES                                                    | . 4 |
| 2.5 | STABILITY OF THE SAMPLES                                   | . 5 |
| 2.6 | ANALYSES                                                   | . 5 |
| 3   | RESULTS                                                    | . 6 |
| 3.1 | STATISTICS                                                 | . 6 |
| 3.2 | GRAPHICS                                                   | . 7 |
| 3.3 | Z-SCORES                                                   | . 7 |
| 4   | EVALUATION                                                 | . 8 |
| 4.1 | EVALUATION PER SAMPLE AND PER TEST                         | . 8 |
| 4.2 | PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES       | 12  |
| 4.3 | COMPARISON OF THE OCTOBER 2016 PT WITH PREVIOUS PT RESULTS | 13  |

## Appendices:

| 1. | Data and statistical results            | 15 |
|----|-----------------------------------------|----|
| 2. | List number of participants per country | 40 |
| 3. | Abbreviations and literature            | 41 |

#### 1 Introduction

Since 1995, the Institute for Interlaboratory Studies organizes a proficiency test for the analyses of o- and p-Xylenes once every two years. As part of the annual proficiency test program of 2016/2017, it was decided to continue this proficiency test on o- and p-Xylenes analyses according to the scope of the latest version of ASTM D5471 for o-Xylene and ASTM D5136 for p-Xylene. In this interlaboratory study, 30 laboratories from 17 different countries did register for participation. See appendix 2 for the number of participants per country. In this report, the results of the proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

#### 2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test (PT). Sample analyses for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC 17025 accredited laboratory. It was decided to send one 0.25 L bottle with o-Xylene (labelled #16201) and one 0.5 L bottle with p-Xylene (labelled #16202). The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

#### 2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This proficiency test falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

#### 2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). This protocol can be downloaded from the iis website www.iisnl.com, from the FAQ page.

#### 2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

#### 2.4 SAMPLES

Two different samples were prepared; one for the analyses of o-Xylene and one for p-Xylene. A batch of approximately 10 litre of o-Xylene was purchased from a local supplier of chemicals. After homogenisation, 48 brown glass bottles with inner and outer caps were filled with 200 mL o-Xylene and labelled #16201. The homogeneity of the subsamples of #16201 was checked by determination of Density at 20°C in accordance with ASTM D4052 and p-Xylene in accordance with ASTM D3797 on 8 stratified randomly selected samples.

|                 | Density at 20°C<br>in kg/L | p-Xylene<br>in %M/M |
|-----------------|----------------------------|---------------------|
| sample #16201-1 | 0.87997                    | 0.0196              |
| sample #16201-2 | 0.87995                    | 0.0196              |
| sample #16201-3 | 0.87996                    | 0.0198              |
| sample #16201-4 | 0.87996                    | 0.0195              |
| sample #16201-5 | 0.87996                    | 0.0197              |
| sample #16201-6 | 0.87995                    | 0.0200              |
| sample #16201-7 | 0.87997                    | 0.0195              |
| sample #16201-8 | 0.87999                    | 0.0196              |

Table 1: homogeneity test results of subsamples #16201 (o-Xylene)

From the above test results, the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the reference test methods in agreement with the procedure of ISO 13528, Annex B2 in the next table:

|                            | Density at 20°C<br>in kg/L | p-Xylene in<br>%M/M |
|----------------------------|----------------------------|---------------------|
| r (observed)               | 0.00001                    | 0.0005              |
| reference test method      | ISO12185:96                | ASTM D3797:05       |
| 0.3 * R (ref. test method) | 0.00015                    | 0.0020              |

Table 2: repeatabilities on subsamples #16201

A batch of approximately 25 litre p-Xylene was purchased from a local supplier of chemicals. After homogenisation, 48 brown glass bottles with inner and outer caps were filled with 500 mL p-Xylene and labelled #16202. The homogeneity of the subsamples was checked by determination of Density at 20°C in accordance with ASTM D4052 and o-Xylene in accordance with ASTM D3798 on 8 stratified randomly selected samples.

|                 | Density at 20°C<br>in kg/L | o-Xylene<br>in %M/M |
|-----------------|----------------------------|---------------------|
| sample #16202-1 | 0.86095                    | 0.069               |
| sample #16202-2 | 0.86096                    | 0.075               |
| sample #16202-3 | 0.86097                    | 0.071               |
| sample #16202-4 | 0.86098                    | 0.072               |
| sample #16202-5 | 0.86095                    | 0.071               |
| sample #16202-6 | 0.86095                    | 0.067               |
| sample #16202-7 | 0.86096                    | 0.071               |
| sample #16202-8 | 0.86097                    | 0.070               |

Table 3: homogeneity test results of subsamples #16202 (p-Xylene)

From the above test results, the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the reference test methods in agreement with the procedure of ISO 13528, Annex B2 in the next table:

|                            | Density at 20°C<br>in kg/L | o-Xylene<br>in %M/M |
|----------------------------|----------------------------|---------------------|
| r (observed)               | 0.00001                    | 0.0023              |
| reference test method      | ISO12185:96                | ASTM D5917:15e1     |
| 0.3 * R (ref. test method) | 0.00015                    | 0.0027              |

Table 4: repeatabilities on subsamples #16202

All observed repeatabilities listed in tables 2 and 4 were less than 0.3 times the corresponding reproducibilities of the reference test methods. Therefore, homogeneities of the sub samples #16201 and #16202 were assumed.

To each of the participating laboratories 1 bottle of 0.25 L with o-Xylene (labelled #16201) and 1 bottle of 0.5 L with p-Xylene (labelled #16202) were sent on September 21, 2016.

#### 2.5 STABILITY OF THE SAMPLES

The stability of o-Xylene and p-Xylene, packed in the brown glass bottles of 0.25 L and 0.5 L was checked. The material was found sufficiently stable for the period of the proficiency test.

#### 2.6 ANALYSES

The participants were requested to determine on sample #16201 (o-Xylene); Purity and Impurities (m- and p-Xylene, Ethylbenzene, n-Propylbenzene, iso-Propylbenzene (Cumene), Styrene, Sum of Ethyltoluenes, Toluene, C9 and heavier aromatics and Non aromatics.

And to determine on sample #16202 (p-Xylene); Appearance, Organic Chloride, Colour Pt/Co, Density at 20°C, Distillation (Initial Boiling Point (IBP), 50% Distillation Point, Dry Point (DP) and Distillation Range (DR)), Sulphur, Purity and Impurities (o- and m-Xylene, Ethylbenzene, Styrene, Toluene, Non-aromatics).

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible.

To get comparable test results a detailed report form, on which the units were prescribed as well as the required reference test methods and a letter of instructions were prepared and made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The laboratories were also requested to confirm the sample receipt on the same data entry portal. A SDS was added to the sample.

#### 3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalysis). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

#### 3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the test results should be used with due care.

According to ISO 5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation, no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

#### 3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also a normal Gauss curve was projected over the Kernel Density Graph for reference.

#### 3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8. When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly

advised to recalculate the z-score, while using the reproducibility of the actual test method

used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = (test result - average of PT) / target standard deviation
```

The  $z_{(target)}$  scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare.

The usual interpretation of z-scores is as follows:

```
|z| < 1 good

1 < |z| < 2 satisfactory

2 < |z| < 3 questionable

3 < |z| unsatisfactory
```

#### 4 **EVALUATION**

In this proficiency test problems were encountered with the dispatch of the samples to laboratories in Brazil and Saudi Arabia. A number of laboratories received the samples late due to custom clearance problems.

Four participants did not report any test results and four other participants did report test results after the final reporting date. Not all participants were able to report all requested parameters. Finally, 26 participants did report 498 numerical test results. Observed were 16 outlying test results, which is 3.2%. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

#### 4.1 EVALUATION PER SAMPLE AND PER TEST

In this section, the results are discussed per sample and per test.

In the iis PT reports, ASTM test methods are referred to with a number (e.g. D5136) and an added designation for the year that the test method was adopted or revised (e.g. D5136:09). If applicable, a designation in parentheses is added to designate the year of reapproval (e.g. d5136:09(2013)). In the tables of Appendix 1 only the test method number and year of adoption or revision will be used.

The reference test methods for the analyses of o- and p-Xylenes were selected according to the scope of the latest version of ASTM D5471:16 for o-Xylene and ASTM D5136:09(2013) for p-Xylene. In case no precision data was mentioned, the calculated reproducibility was compared against the estimated requirements based on the Horwitz equation.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care.

## Sample #16201 o-Xylene:

Purity: This determination was not problematic. No statistical outliers were

observed and the calculated reproducibility is in good agreement with

the requirements of ASTM D3797:05.

m-Xylene: This determination was not problematic. No statistical outliers were

observed and the calculated reproducibility is in good agreement with

the requirements of ASTM D3797:05.

p-Xylene: This determination was not problematic. One statistical outlier was

> observed. The calculated reproducibility after rejection of the statistical outlier is in full agreement with the requirements of ASTM D3797:05.

Ethylbenzene: This determination was not problematic. Two statistical outliers were

> observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM

D3797:05.

n-Propylbenzene: This determination may be problematic. One statistical outlier was

observed and one other test result was excluded. The calculated

reproducibility after rejection of the suspect data is not in agreement with

the strict requirements estimated using the Horwitz equation.

iso-Propylbenzene: This determination was problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical

outlier is not in agreement with the requirements of ASTM D3797:05.

Styrene: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in good agreement with the

requirements of ASTM D3797:05.

Sum of Ethyltoluenes: This determination may be problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the strict requirements estimated using

the Horwitz equation (based on 3 components).

Toluene: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in agreement with the

requirements of ASTM D3797:05.

C9 and heavier aromatics: This determination was not problematic. No statistical outliers

were observed. The calculated reproducibility is in good agreement with

the requirements of ASTM D7504:16.

#### Nonaromatics:

This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the requirements of ASTM D3797:05.

### Sample #16202 p-Xylene:

#### Appearance:

All participants agreed about the appearance of sample #16202. Participants who used the ASTM E2680 should report the Appearance as 'pass' (or 'fail'). Nine participants reported the appearance correctly as pass. The other laboratories used different kind of terms or abbreviations like: Clear, Clear and Bright or Clear and Free From Suspended Matter.

Organic chloride: This determination was not problematic at all. One statistical outlier was observed and the calculated reproducibility after rejection of the statistical outlier is in good agreement with the requirements of ASTM D5808:09a(2014).

### Colour Pt/Co:

This determination may be problematic dependently on the test method used. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ASTM D5386:10 but it is in agreement with the requirements of ASTM D1209:05(2011).

#### **Density**:

This determination was not problematic at all. One statistical outlier was observed. The calculated reproducibility is in good agreement with the requirements of ISO12185:96.

#### Distillation:

This determination was not problematic. No statistical outliers were observed. In total eight test results (from two participants) were excluded as the reported distillation temperatures were much lower that the theoretical boiling point of p-Xylene (BP=138.3°C). The calculated reproducibilities of IBP, 50% rec, DP and distillation range after rejection of the suspect data are in agreement with the requirements of ASTM D850-A:16.

#### Sulphur:

This determination was problematic. No statistical outliers were observed. However, the calculated reproducibility is not in agreement with the requirements of ASTM D7183:16.

#### Purity:

This determination was problematic for a number of laboratories. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D5917:15e1.

<u>o-Xylene</u>: This determination was not problematic at all. No statistical outliers were

observed. The calculated reproducibility is in good agreement with the

requirements of ASTM D5917:15e1.

<u>m-Xylene</u>: This determination was not problematic. Two statistical outliers were

observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM

D5917:15e1.

Ethylbenzene: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in good agreement with the

requirements of ASTM D5917:15e1.

Styrene: This determination may not be problematic. Two statistical outliers were

observed and one other test result was excluded. The calculated reproducibility after rejection of the suspect data is in good agreement

with the requirements estimated from the Horwitz equation.

Toluene: This determination was not problematic. One statistical outlier was

observed. However, the calculated reproducibility after rejection of the statistical outlier is in good agreement with the requirements of ASTM

D5917:15e1.

Nonaromatics: This determination was not problematic at all. No statistical outliers were

observed and the calculated reproducibility is in good agreement with

the requirements of ASTM D5917:15e1.

#### 4.2 Performance evaluation for the group of Laboratories

A comparison has been made between the reproducibility as declared by the relevant reference test method and the reproducibility as found for the group of participating laboratories. The average results per sample, calculated reproducibilities and reproducibilities derived from reference test methods (in casu ASTM test methods), are compared in the next tables.

| Parameter                | unit | n  | average | 2.8 * sd | R (lit) |
|--------------------------|------|----|---------|----------|---------|
| Purity (o-Xylene)        | %M/M | 21 | 99.342  | 0.290    | 0.425   |
| m-Xylene                 | %M/M | 19 | 0.068   | 0.013    | 0.017   |
| p-Xylene                 | %M/M | 19 | 0.020   | 0.007    | 0.007   |
| Ethylbenzene             | %M/M | 18 | 0.010   | 0.004    | 0.005   |
| n-Propylbenzene          | %M/M | 10 | 0.003   | 0.002    | 0.001   |
| i-Propylbenzene (Cumene) | %M/M | 20 | 0.282   | 0.085    | 0.073   |
| Styrene                  | %M/M | 16 | 0.191   | 0.047    | 0.076   |
| Sum of Ethyltoluenes     | %M/M | 9  | 0.004   | 0.003    | 0.002   |
| Toluene                  | %M/M | 18 | 0.002   | 0.001    | 0.001   |
| C9 and heavier aromatics | %M/M | 14 | 0.300   | 0.372    | 0.931   |
| Non-aromatics            | %M/M | 19 | 0.083   | 0.059    | 0.061   |

Table 5: reproducibilities for sample #16201 (o-Xylene)

| Parameter             | unit  | n  | average | 2.8 * sd | R(lit) |
|-----------------------|-------|----|---------|----------|--------|
| Appearance            |       | 22 | Pass    | n.a.     | n.a.   |
| Organic Chloride      | mg/kg | 11 | 0.34    | 0.50     | 1.30   |
| Colour Pt/Co          |       | 20 | 6.4     | 7.4      | 5.6    |
| Density at 20°C       | kg/L  | 22 | 0.8610  | 0.0002   | 0.0005 |
| Initial Boiling Point | °C    | 19 | 137.8   | 0.7      | 1.0    |
| 50% Boiling Point     | °C    | 19 | 138.3   | 0.3      | 0.4    |
| Dry Point             | °C    | 19 | 138.4   | 0.4      | 0.4    |
| Distillation Range    | °C    | 18 | 0.6     | 0.6      | 1.1    |
| Sulphur               | mg/kg | 21 | 0.64    | 0.47     | 0.28   |
| Purity (p-Xylene)     | %M/M  | 20 | 99.603  | 0.047    | 0.042  |
| o-Xylene              | %M/M  | 23 | 0.077   | 0.014    | 0.099  |
| m-Xylene              | %M/M  | 21 | 0.195   | 0.036    | 0.064  |
| Ethylbenzene          | %M/M  | 22 | 0.093   | 0.013    | 0.020  |
| Styrene               | %M/M  | 11 | 0.006   | 0.001    | 0.001  |
| Toluene               | %M/M  | 22 | 0.010   | 0.003    | 0.005  |
| Non-aromatics         | %M/M  | 21 | 0.014   | 0.012    | 0.032  |

Table 6: reproducibilities for sample #16202 (p-Xylene)

Without further statistical calculations, it can be concluded that for most tests there is a good compliance of the group of participating laboratories with the relevant reference test method. The problematic tests have been discussed in paragraph 4.1.

## 4.3 COMPARISON OF THE OCTOBER 2016 PROFICIENCY TEST WITH PREVIOUS PT RESULTS

|                            | October<br>2016 | October<br>2014 | September 2012 | October<br>2010 | November<br>2008 |
|----------------------------|-----------------|-----------------|----------------|-----------------|------------------|
| Number of reporting labs   | 26              | 29              | 27             | 26              | 26               |
| Number of results reported | 498             | 529             | 471            | 471             | 502              |
| Statistical outliers       | 16              | 29              | 27             | 41              | 33               |
| Percentage outliers        | 3.2%            | 5.5%            | 5.7%           | 8.7%            | 6.6%             |

Table 7: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the respective reference test methods. The conclusions are given the following table:

| Determination            | October<br>2016 | October<br>2014 | September 2012 | October<br>2010 | November<br>2008 |
|--------------------------|-----------------|-----------------|----------------|-----------------|------------------|
| Purity (o-Xylene)        | +               | ++              | +              | ++              | ++               |
| m-Xylene                 | +               | ++              | ++             | ++              | +/-              |
| p-Xylene                 | +/-             | ++              | ++             | ++              | ++               |
| Ethylbenzene             | +               | ++              | ++             | ++              | ++               |
| n-Propylbenzene          | -               | +/-             | ++             | -               | +/-              |
| i-Propylbenzene (Cumene) | -               | +               | ++             | ++              | -                |
| Styrene                  | +               | +               | ++             | ++              | ++               |
| Sum of Ethyltoluenes     | -               | +               | +/-            | -               | ++               |
| Toluene                  | +/-             | +/-             | ++             | ++              | ++               |
| C9 and heavier aromatics | ++              | n.e.            | n.e.           | n.e.            | n.e.             |
| Non-aromatics            | +/-             | ++              | ++             | ++              | ++               |

Table 8: comparison determinations of sample #16201 (o-Xylene) against the reference test methods

| Determination         | October<br>2016 | October<br>2014 | September 2012 | October<br>2010 | November<br>2008 |
|-----------------------|-----------------|-----------------|----------------|-----------------|------------------|
| Organic Chloride      | ++              | ++              | n.e            | n.e.            | n.e.             |
| Colour Pt/Co          | -               | ++              | +              |                 | ++               |
| Density at 20°C       | ++              | ++              | ++             | ++              | ++               |
| Initial Boiling Point | +               | ++              | +              | ++              | ++               |
| 50% Boiling Point     | +               | ++              | +/-            | +/-             | n.e.             |
| Dry Point             | +/-             | ++              | -              | ++              | -                |
| Distillation Range    | ++              | n.e.            | n.e            | n.e.            | n.e.             |
| Sulphur               | -               | +/-             | n.e.           | ()              | n.e.             |
| Purity (p-Xylene)     | +/-             | ++              | -              | ++              | ++               |
| o-Xylene              | ++              | ++              | ++             | ++              | ++               |
| m-Xylene              | +               | +               | -              |                 | +/-              |
| Ethylbenzene          | +               | ++              | ++             | ++              | ++               |
| Styrene               | +/-             | ++              | -              | n.e.            | ++               |
| Toluene               | +               | ++              | ++             | ++              | ++               |
| Non-aromatics         | ++              | ++              | ++             | ++              | ++               |

Table 9: comparison determinations of sample #16202 (p-Xylene) against the reference test methods

NB Marks between brackets should be used with care as the consensus value was outside the application range of the test method

The performance of the determinations against the requirements of the respective reference test methods is listed in the above table. The following performance categories were used:

- ++: group performed much better than the reference test method
- + : group performed better than the reference test method
- +/-: group performance equals the reference test method
- : group performed worse than the reference test method
- -- : group performed much worse than the reference test method
- n.e.: not evaluated

**APPENDIX 1**Determination of Purity on o-Xylene sample #16201; results in %M/M.

| Lab   method   value   mark   z(targ)   remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 150 D3797 99.24 -0.67 171 D3797 99.429 0.57 174 D6563 99.356 0.09 311 D3797 99.42 0.51 323 D5917mod. 99.438 0.63 333 D3797 99.28 -0.41 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 171 D3797 99 429 0.57 174 D6563 99.356 0.09 311 D3797 99.42 0.51 323 D5917mod. 99.438 0.63 333 D3797 99.28 -0.41 333 D2360 99.39 0.32 445 D6563 99.3847 0.28 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 174 D6563 99.356 0.09 311 D3797 99.42 0.51 323 D5917mod. 99.438 0.63 333 D397 99.28 -0.41 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 311 D3797 99.42 0.51 323 D5917mod. 99.438 0.63 333 D3797 99.28 -0.41 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 323 D5917mod. 99.438 0.63 333 D3797 99.28 -0.41 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 333 D3797 99.28 -0.41 338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 338 357 D7504 99.302 -0.26 391 D2360 99.39 0.32 445 D6563 99.3847 0.28 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 357 D7504 99.302 -0.26 391 D2360 99.39 0.32 445 D6563 99.3847 0.28 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 391 D2360 99.39 0.32 445 D6563 99.3847 0.28 551 555 558 563 D7504 99.294 C -0.32 first reported: 99.296 913 D3797 99.36 0.12 963 1041 In house 99.298 -0.29 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1436 1880 1001 suspect 1001 normality suspect 1002 normality suspect 1003 normality suspect 1003 normality suspect 1007 normality sus |       |
| 551 555 558 558 559 663 57504 99.294 C 0.32 first reported: 99.296 913 D3797 99.36 0.12 963 1041 In house 99.298 0.29 1067 D3797 99.265 0.51 1081 99.29 0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 0.33 1866 1880 100 normality suspect n 21 outliers 0 mean (n) 90.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246  compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 555 558 563 D7504 99.294 C -0.32 first reported: 99.296 913 D3797 99.36 0.12 963 1041 In house 99.298 -0.29 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246  compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 558 663 D7504 99.294 C -0.32 first reported: 99.296 913 D3797 99.36 0.12 963 1041 In house 99.298 -0.29 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 663 D7504 99.294 C -0.32 first reported: 99.296 913 D3797 99.36 0.12 963 1041 In house 99.298 -0.29 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246  R(D3797:05) 0.4246  responded: 99.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 913 D3797 99.36 0.12 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 963 1041 In house 99.298 -0.29 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 19008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1041 In house 99.298 -0.29 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 19008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 1067 D3797 99.265 -0.51 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 1081 99.29 -0.34 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 1107 D7504 99.570 1.50 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 1201 D3797 99.52 1.17 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 10.000 9008 10.000  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 1291 D7504 99.3154 -0.17 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 1294 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 1357 In house 99.08 -1.73 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 1434 D3797 99.3666 0.16 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1538 D7504 99.2914 -0.33 1866 1880 9008  normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 1866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| normality suspect n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| n 21 outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| outliers 0 mean (n) 99.3419 st.dev. (n) 0.10371 R(calc.) 0.2904 R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| mean (n) 99.3419<br>st.dev. (n) 0.10371<br>R(calc.) 0.2904<br>R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| st.dev. (n) 0.10371<br>R(calc.) 0.2904<br>R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| R(calc.) 0.2904<br>R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| R(D3797:05) 0.4246 compare R(D7504:16)=0.0552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 99.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 99.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Δ Δ   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 99.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 99.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 98.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 98.7 L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1107  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1107  |
| 4.5 Kernel Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1107  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7011  |
| 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7011  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7011  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11077 |
| 3 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1071  |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1071  |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1071  |
| 2.5 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1021  |
| 2.5<br>2<br>1.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7011  |
| 2.5 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7011  |
| 2.5<br>2<br>1.5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1201  |

## Determination of m-Xylene on o-Xylene sample #16201; results in %M/M.

| lab          | method         |               | val        | IIE       | mark | •   | z(targ)        | rem  | arks    |         |        |          |        |      |    |      |     |      |
|--------------|----------------|---------------|------------|-----------|------|-----|----------------|------|---------|---------|--------|----------|--------|------|----|------|-----|------|
| 52           | D7504          |               |            | 707       | man  | •   | 0.42           | 1011 | uiko    |         |        |          |        |      |    |      |     |      |
| 150          | D3797          |               | 0.0        |           |      |     | 1.31           |      |         |         |        |          |        |      |    |      |     |      |
| 171          | D3797          |               | 0.0        |           |      |     | -0.20          |      |         |         |        |          |        |      |    |      |     |      |
| 174          | D6563          |               | <0.        |           |      |     | <-9.80         | pos  | sibly a | false r | egativ | e test r | esult? |      |    |      |     |      |
| 311          | D3797          |               | 0.0        |           |      |     | -2.05          |      |         |         |        |          |        |      |    |      |     |      |
| 323          | D5917m         | od.           |            | 658       |      |     | -0.40          |      |         |         |        |          |        |      |    |      |     |      |
| 333          | D3797          |               | 0.0        |           |      |     | -0.03          |      |         |         |        |          |        |      |    |      |     |      |
| 338<br>357   | D7504          |               | 0.0        | -<br>682  |      |     | 0.00           |      |         |         |        |          |        |      |    |      |     |      |
| 391          | D7304          |               |            |           |      |     | 0.00           |      |         |         |        |          |        |      |    |      |     |      |
| 445          | D6563          |               |            | 626       |      |     | -0.94          |      |         |         |        |          |        |      |    |      |     |      |
| 551          | D0000          |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 555          |                |               |            | -         |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 558          |                |               |            | -         |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 663          | D7504          |               |            | 692       |      |     | 0.17           |      |         |         |        |          |        |      |    |      |     |      |
| 913          | D3797          |               |            | 700       |      |     | 0.30           |      |         |         |        |          |        |      |    |      |     |      |
| 963          |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 1041         | In house       |               | 0.0        |           |      |     | 0.30           |      |         |         |        |          |        |      |    |      |     |      |
| 1067<br>1081 | D3797          |               | 0.0        | 77<br>662 |      |     | 1.48<br>-0.33  |      |         |         |        |          |        |      |    |      |     |      |
| 1107         | D7504          |               |            | 680       |      |     | -0.33<br>-0.03 |      |         |         |        |          |        |      |    |      |     |      |
| 1201         | D7304<br>D3797 |               | 0.0        |           |      |     | -0.03<br>-0.54 |      |         |         |        |          |        |      |    |      |     |      |
| 1291         | D7504          |               |            | 718       |      |     | 0.61           |      |         |         |        |          |        |      |    |      |     |      |
| 1294         | 2.00.          |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 1357         | In house       |               | 0.0        | 7         |      |     | 0.30           |      |         |         |        |          |        |      |    |      |     |      |
| 1434         | D3797          |               |            | 642       |      |     | -0.67          |      |         |         |        |          |        |      |    |      |     |      |
| 1538         | D7504          |               | 0.0        | 699       |      |     | 0.29           |      |         |         |        |          |        |      |    |      |     |      |
| 1866         |                |               |            | -         |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 1880         |                |               |            | -         |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 9008         |                |               |            | -         |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | normality      | ,             | SUS        | pect      |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | n              |               | 19         | роос      |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | outliers       |               | 0          |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | mean (n)       | )             | 0.0        | 682       |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | st.dev. (r     | 1)            |            | 0465      |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | R(calc.)       |               |            | 130       |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              | R(D3797        | ':05)         | 0.0        | 166       |      |     |                | com  | ipare F | R(D750  | 4:16)= | 0.0027   |        |      |    |      |     |      |
|              |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.09 T       |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.085 -      |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.08 -       |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.075 -      |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      | Δ   | Δ    |
| 0.07 -       |                |               |            |           |      |     |                |      | Δ       | Δ       | Δ      | Δ        | Δ      | Δ    | Δ  | Δ    |     |      |
| 0.065 -      | Δ              | Δ             | Δ          | Δ         | Δ    | Δ   | _              | _    |         |         |        |          |        |      |    |      |     |      |
| 0.06 -       | Δ              |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.055 -      | Δ              |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.05 -       |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.045 -      |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.04         |                |               |            |           |      |     |                |      |         |         |        |          |        |      | -  |      |     |      |
|              | 311            | 454           | 1201       | 323       | 1081 | 171 | 333            | 1107 | 357     | 963     | 1538   | 913      | 140    | 1357 | 25 | 1291 | 150 | 1067 |
|              |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 120          |                | ^             |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 400          |                | /\Ke          | ernel Dens | ity       |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 100          |                | /\            |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 80 -         |                | $ \wedge$ $ $ |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              |                | / \           |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 60 -         |                | / \           |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 40 -         |                | //            | \          |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 20 -         | /              | /             | \ \        |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 20 ]         | $\sim$ //      | '             | ~//        |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0            | <u> </u>       |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
| 0.04         | 0.05 0.06      | 0.07          | 0.08       | 0.09      |      |     |                |      |         |         |        |          |        |      |    |      |     |      |
|              |                |               |            |           |      |     |                |      |         |         |        |          |        |      |    |      |     |      |

## Determination of p-Xylene on o-Xylene sample #16201; results in %M/M.

| lah •    | method         | value   | mark     | z/tara\                | remarks                                 |
|----------|----------------|---------|----------|------------------------|-----------------------------------------|
|          | D7504          | 0.0249  | С        | <b>z(targ)</b><br>1.84 | first reported: 0.0388                  |
|          | D3797          | 0.0249  | C        | 1.64                   | ilist reported. 0.0366                  |
|          | D3797          | 0.024   |          | -0.13                  |                                         |
|          | D6563          | 0.020   | R(0.01)  | 19.19                  |                                         |
|          | D3797          | 0.0002  | 11(0.01) | -1.73                  |                                         |
|          | D5917mod.      | 0.010   |          | -0.29                  |                                         |
|          | D3797          | 0.0100  |          | -0.23                  |                                         |
| 338      | D3131          |         |          | -0.13                  |                                         |
|          | D7504          | 0.0197  |          | -0.25                  |                                         |
| 391      | D7304          |         |          | -0.23                  |                                         |
|          | D6563          | 0.0258  |          | 2.20                   |                                         |
| 551      | D0000          |         |          |                        |                                         |
| 555      |                |         |          |                        |                                         |
| 558      |                |         |          |                        |                                         |
|          | D7504          | 0.0202  |          | -0.05                  |                                         |
|          | D3797          | 0.0207  |          | 0.15                   |                                         |
| 963      |                |         |          |                        |                                         |
|          | In house       | 0.023   |          | 1.07                   |                                         |
| 1067     | D3797          | 0.021   |          | 0.27                   |                                         |
| 1081     |                | 0.0185  |          | -0.73                  |                                         |
| 1107 [   | D7504          | 0.0186  |          | -0.69                  |                                         |
| 1201 [   | D3797          | 0.017   |          | -1.33                  |                                         |
| 1291 [   | D7504          | 0.0182  |          | -0.85                  |                                         |
| 1294     |                |         |          |                        |                                         |
|          | In house       | 0.02    |          | -0.13                  |                                         |
|          | D3797          | 0.0185  |          | -0.73                  |                                         |
|          | D7504          | 0.0204  |          | 0.03                   |                                         |
| 1866     |                |         |          |                        |                                         |
| 1880     |                |         |          |                        |                                         |
| 9008     |                |         |          |                        |                                         |
| <b>.</b> | normality      | OK      |          |                        |                                         |
|          | normality<br>n | 19      |          |                        |                                         |
|          | outliers       | 19      |          |                        |                                         |
|          | mean (n)       | 0.0203  |          |                        |                                         |
|          | st.dev. (n)    | 0.0203  |          |                        |                                         |
|          | R(calc.)       | 0.00255 |          |                        |                                         |
|          | R(D3797:05)    | 0.0071  |          |                        | compare R(D7504:16)=0.0012              |
| '        | 11(00/0/.00)   | 0.0070  |          |                        | σοπραίο Γημέσο <del>τ.</del> 10/-0.0012 |





## Determination of Ethylbenzene on o-Xylene sample #16201; results in %M/M.

| lab  | method      | value   | mark    | z(targ) | remarks                    |
|------|-------------|---------|---------|---------|----------------------------|
| 52   | D7504       | 0.0100  |         | 0.04    |                            |
| 150  | D3797       | 0.011   |         | 0.66    |                            |
| 171  | D3797       | 0.010   |         | 0.04    |                            |
| 174  | D6563       | 0.0157  | G(0.05) | 3.57    |                            |
| 311  | D3797       | 0.008   |         | -1.20   |                            |
| 323  | D5917mod.   | 0.0090  |         | -0.58   |                            |
| 333  | D3797       | 0.010   |         | 0.04    |                            |
| 338  |             |         |         |         |                            |
| 357  | D7504       | 0.0098  |         | -0.09   |                            |
| 391  |             |         |         |         |                            |
| 445  | D6563       | 0.0140  |         | 2.52    |                            |
| 551  |             |         |         |         |                            |
| 555  |             |         |         |         |                            |
| 558  |             |         |         |         |                            |
| 663  | D7504       | 0.0096  |         | -0.21   |                            |
| 913  | D3797       | 0.0100  |         | 0.04    |                            |
| 963  |             |         |         |         |                            |
| 1041 | In house    | 0.010   |         | 0.04    |                            |
| 1067 | D3797       | 0.011   |         | 0.66    |                            |
| 1081 | D==0.       | 0.0092  |         | -0.46   |                            |
| 1107 | D7504       | 0.0089  |         | -0.64   |                            |
| 1201 | D3797       | 0.0080  |         | -1.20   |                            |
| 1291 | D7504       | 0.0106  |         | 0.41    |                            |
| 1294 |             |         | 0(0.04) |         |                            |
| 1357 | In house    | 0.02    | G(0.01) | 6.24    |                            |
| 1434 | D3797       | 0.0087  |         | -0.77   |                            |
| 1538 | D7504       | 0.0111  |         | 0.72    |                            |
| 1866 |             |         |         |         |                            |
| 1880 |             |         |         |         |                            |
| 9008 |             |         |         |         |                            |
|      | normality   | not OK  |         |         |                            |
|      | n           | 18      |         |         |                            |
|      | outliers    | 2       |         |         |                            |
|      | mean (n)    | 0.0099  |         |         |                            |
|      | st.dev. (n) | 0.00138 |         |         |                            |
|      | R(calc.)    | 0.0039  |         |         |                            |
|      | R(D3797:05) | 0.0047  |         |         | compare R(D7504:16)=0.0033 |
|      | , //        |         |         |         |                            |





## Determination of n-Propylbenzene on o-Xylene sample #16201; results in %M/M.

| lals       | modbod      | value   | moul.   | =/4auc.\ | wa wa aulea                                    |
|------------|-------------|---------|---------|----------|------------------------------------------------|
| lab        | method      | value   | mark    | z(targ)  | remarks                                        |
| 52<br>150  | D7504       | 0.0038  |         | 1.94     |                                                |
| 150<br>171 | D3797       |         | 01/     | 10.52    | test regult evaluded; zere is not a real value |
|            |             | 0       | ex      | -10.53   | test result excluded; zero is not a real value |
| 174        | D6563       | 0.0031  |         | -0.36    |                                                |
| 311        | D3797       | 0.004   | 0       | 2.59     | first remarked, 30,004                         |
| 323        | D5917mod.   | 0.003   | С       | -0.69    | first reported: <0.001                         |
| 333        |             |         |         |          |                                                |
| 338        | D7504       |         | _       |          | r                                              |
| 357        | D7504       | 0.0035  | С       | 0.95     | first reported: 0.0065                         |
| 391        |             |         |         |          |                                                |
| 445        |             |         |         |          |                                                |
| 551        |             |         |         |          |                                                |
| 555        |             |         |         |          |                                                |
| 558        |             |         | _       |          |                                                |
| 663        | D7504       | 0.0033  | С       | 0.30     | first reported: <0.0002                        |
| 913        |             |         |         |          |                                                |
| 963        |             |         |         |          |                                                |
| 1041       | In house    | 0.003   |         | -0.69    |                                                |
| 1067       |             |         |         |          |                                                |
| 1081       |             | 0.0032  |         | -0.03    |                                                |
| 1107       |             |         |         |          |                                                |
| 1201       |             |         |         |          |                                                |
| 1291       |             |         |         |          |                                                |
| 1294       |             |         |         |          |                                                |
| 1357       |             | 0.335   | D(0.01) | 1088.90  |                                                |
| 1434       | D3797       | 0.0019  |         | -4.30    |                                                |
| 1538       | D7504       | 0.0033  |         | 0.30     |                                                |
| 1866       |             |         |         |          |                                                |
| 1880       |             |         |         |          |                                                |
| 9008       |             |         |         |          |                                                |
|            |             |         |         |          |                                                |
|            | normality   | not OK  |         |          |                                                |
|            | n           | 10      |         |          |                                                |
|            | outliers    | 1+1ex   |         |          |                                                |
|            | mean (n)    | 0.0032  |         |          |                                                |
|            | st.dev. (n) | 0.00057 |         |          |                                                |
|            | R(calc.)    | 0.0016  |         |          |                                                |
|            | R(Horwitz)  | 0.0009  |         |          |                                                |
|            |             |         |         |          |                                                |





## Determination of iso-Propylbenzene (Cumene) on o-Xylene sample #16201; results in %M/M.

| lab          | method            | value            | mark    | z(targ)       | remarks                    |
|--------------|-------------------|------------------|---------|---------------|----------------------------|
| 52           | D7504             | 0.2996           |         | 0.68          |                            |
| 150          | D3797             | 0.317            |         | 1.35          |                            |
| 171          | D3797             | 0.035            | R(0.01) | -9.51         |                            |
| 174          | D6563             | 0.2879           |         | 0.23          |                            |
| 311          | D3797             | 0.241            |         | -1.58         |                            |
| 323          | D5917mod.         | 0.2467           |         | -1.36         |                            |
| 333          | D3797             | 0.309            |         | 1.04          |                            |
| 338          |                   |                  |         |               |                            |
| 357          | D7504             | 0.2960           |         | 0.54          |                            |
| 391          | D2360             | 0.258            |         | -0.92         |                            |
| 445          | D6563             | 0.2713           |         | -0.41         |                            |
| 551          |                   |                  |         |               |                            |
| 555          |                   |                  |         |               |                            |
| 558          |                   |                  |         |               |                            |
| 663          | D7504             | 0.2964           |         | 0.55          |                            |
| 913          | D3797             | 0.3130           |         | 1.19          |                            |
| 963          |                   |                  |         |               |                            |
| 1041         | In house          | 0.297            |         | 0.58          |                            |
| 1067         | D3797             | 0.317            |         | 1.35          |                            |
| 1081         | D==0.             | 0.3053           |         | 0.90          |                            |
| 1107         | D7504             | 0.2124           |         | -2.68         |                            |
| 1201         | D3797             | 0.23             |         | -2.00         |                            |
| 1291         | D7504             | 0.2953           |         | 0.51          |                            |
| 1294         | la hacea          | 0.00             |         | 0.00          |                            |
| 1357         | In house<br>D3797 | 0.28             |         | -0.08         |                            |
| 1434<br>1538 | D3797<br>D7504    | 0.2680<br>0.2994 |         | -0.54<br>0.67 |                            |
| 1866         | D7304             | 0.2994           |         | 0.07          |                            |
| 1880         |                   |                  |         |               |                            |
| 9008         |                   |                  |         |               |                            |
| 9006         |                   |                  |         |               |                            |
|              | normality         | OK               |         |               |                            |
|              | n                 | 20               |         |               |                            |
|              | outliers          | 1                |         |               |                            |
|              | mean (n)          | 0.2820           |         |               |                            |
|              | st.dev. (n)       | 0.03035          |         |               |                            |
|              | R(calc.)          | 0.0850           |         |               |                            |
|              | R(D3797:05)       | 0.0727           |         |               | Compare R(D7504:16)=0.0002 |
|              | ,                 |                  |         |               |                            |





## Determination of Styrene on o-Xylene sample #16201; results in %M/M.

| lab          | method      | value   | mark z(targ) | remarks |
|--------------|-------------|---------|--------------|---------|
| 52           | D7504       | 0.1952  | 0.15         |         |
| 150          | D3797       | 0.205   | 0.51         |         |
| 171          | D3797       | 0.184   | -0.26        |         |
| 174          | D6563       | 0.1767  | -0.53        |         |
| 311          | D3797       | 0.160   | -1.14        |         |
| 323          | D5917mod.   | 0.1675  | -0.86        |         |
| 333          | D3797       | 0.192   | 0.04         |         |
| 338          |             |         |              |         |
| 357          | D7504       | 0.1860  | -0.18        |         |
| 391          |             |         |              |         |
| 445          |             |         |              |         |
| 551          |             |         |              |         |
| 555          |             |         |              |         |
| 558          |             |         |              |         |
| 663          | D7504       | 0.1931  | 0.08         |         |
| 913          | D3797       | 0.2315  | 1.48         |         |
| 963          |             |         |              |         |
| 1041         | In house    | 0.194   | 0.11         |         |
| 1067         | D3797       | 0.209   | 0.66         |         |
| 1081         |             | 0.2019  | 0.40         |         |
| 1107         | D0707       |         |              |         |
| 1201         | D3797       | 0.186   | -0.18        |         |
| 1291         |             |         |              |         |
| 1294         |             |         |              |         |
| 1357         | D2707       | 0.4000  | 0.00         |         |
| 1434         | D3797       | 0.1839  | -0.26        |         |
| 1538         | D7504       | 0.1907  | -0.01        |         |
| 1866<br>1880 |             |         |              |         |
| 9008         |             |         |              |         |
| 9006         |             |         |              |         |
|              | normality   | suspect |              |         |
|              | n           | 16      |              |         |
|              | outliers    | 0       |              |         |
|              | mean (n)    | 0.1910  |              |         |
|              | st.dev. (n) | 0.01669 |              |         |
|              | R(calc.)    | 0.0467  |              |         |
|              | R(D3797:05) | 0.0764  |              |         |
|              |             |         |              |         |





Determination of Sum of Ethyltoluenes on o-Xylene sample #16201; results in %M/M.

| lab  | method            | value   | mark    | z(targ) | remarks                 |
|------|-------------------|---------|---------|---------|-------------------------|
| 52   | D7504             | 0.0048  |         | 1.36    |                         |
| 150  |                   |         |         |         |                         |
| 171  | D3797             | 0.002   |         | -3.09   |                         |
| 174  | D6563             | 0.0042  |         | 0.41    |                         |
| 311  | D3797             | 0.004   |         | 0.09    |                         |
| 323  | D5917mod.         | <0.010  |         |         |                         |
| 333  | 200               |         |         |         |                         |
| 338  |                   |         |         |         |                         |
| 357  | D7504             | 0.0023  |         | -2.62   |                         |
| 391  | 2.00.             |         |         |         |                         |
| 445  |                   |         |         |         |                         |
| 551  |                   |         |         |         |                         |
| 555  |                   |         |         |         |                         |
| 558  |                   |         |         |         |                         |
| 663  | D7504             | 0.0045  |         | 0.88    |                         |
| 913  |                   |         |         |         |                         |
| 963  |                   |         |         |         |                         |
| 1041 |                   |         |         |         |                         |
| 1067 | D3797             | 0.005   |         | 1.68    |                         |
| 1081 |                   |         |         |         |                         |
| 1107 |                   |         |         |         |                         |
| 1201 |                   |         |         |         |                         |
| 1291 |                   |         |         |         |                         |
| 1294 |                   |         |         |         |                         |
| 1357 | In house          | 0.20    | D(0.01) | 311.84  |                         |
| 1434 | D3797             | 0.004   | C` ´    | 0.09    | first reported: 99.4603 |
| 1538 | D7504             | 0.0047  |         | 1.20    | ·                       |
| 1866 |                   |         |         |         |                         |
| 1880 |                   |         |         |         |                         |
| 9008 |                   |         |         |         |                         |
|      | normality         | ОК      |         |         |                         |
|      | n                 | 9       |         |         |                         |
|      | outliers          | 1       |         |         |                         |
|      | mean (n)          | 0.0039  |         |         |                         |
|      | st.dev. (n)       | 0.00108 |         |         |                         |
|      | R(calc.)          | 0.0030  |         |         |                         |
|      | R(Horwitz 3 comp) | 0.0018  |         |         |                         |
|      | , <b>--</b> /     |         |         |         |                         |





## Determination of Toluene on o-Xylene sample #16201; results in %M/M.

| lab  | method      | value    | mark z(targ) | remarks                     |
|------|-------------|----------|--------------|-----------------------------|
| 52   | D7504       | 0.0025   | 2.18         |                             |
| 150  | D3797       | 0.002    | -0.33        |                             |
| 171  | D3797       | 0.002    | -0.33        |                             |
| 174  | D6563       | 0.0022   | 0.67         |                             |
| 311  | D3797       | 0.002    | -0.33        |                             |
| 323  | D5917mod.   | 0.0023   | 1.17         |                             |
| 333  |             |          |              |                             |
| 338  |             |          |              |                             |
| 357  | D7504       | 0.0021   | 0.17         |                             |
| 391  | 2.00.       |          |              |                             |
| 445  | D6563       | 0.0018   | -1.34        |                             |
| 551  | 20000       |          |              |                             |
| 555  |             |          |              |                             |
| 558  |             |          |              |                             |
| 663  | D7504       | 0.0022   | 0.67         |                             |
| 913  | D3797       | 0.0021   | 0.17         |                             |
| 963  | 20.0.       |          |              |                             |
| 1041 | In house    | 0.002    | -0.33        |                             |
| 1067 | D3797       | 0.002    | -0.33        |                             |
| 1081 | 20.0.       | 0.0020   | -0.33        |                             |
| 1107 | D7504       | 0.0017   | -1.84        |                             |
| 1201 | D3797       | 0.0016   | -2.34        |                             |
| 1291 | D7504       | 0.0020   | -0.33        |                             |
| 1294 | 2.00.       |          |              |                             |
| 1357 |             |          |              |                             |
| 1434 | D3797       | 0.0023   | 1.17         |                             |
| 1538 | D7504       | 0.0024   | 1.67         |                             |
| 1866 |             |          |              |                             |
| 1880 |             |          |              |                             |
| 9008 |             |          |              |                             |
|      | normality   | OK       |              |                             |
|      | n           | 18       |              |                             |
|      | outliers    | 0        |              |                             |
|      | mean (n)    | 0.00207  |              |                             |
|      | st.dev. (n) | 0.000230 |              |                             |
|      | R(calc.)    | 0.00056  |              |                             |
|      | R(D3797:05) | 0.00064  |              | compare R(D7504:16)=0.00568 |
|      |             |          |              | ·                           |





Determination of C9 and heavier aromatics on o-Xylene sample #16201; results in %M/M.

| lak  | moth od     | value   | ma a ula | =/4aus:\ | no monte.              |
|------|-------------|---------|----------|----------|------------------------|
| lab  | method      | value   | mark     | z(targ)  | remarks                |
| 52   | D7504       | 0.3134  | •        | 0.04     | C                      |
| 150  | D3797       | 0.331   | С        | 0.09     | first reported: 0.014  |
| 171  | D3797       | 0.520   |          | 0.66     |                        |
| 174  | D6563       | 0.4728  |          | 0.52     |                        |
| 311  | D3797       | 0.253   |          | -0.14    |                        |
| 323  | D5917mod.   | 0.250   | С        | -0.15    | first reported: <0.010 |
| 333  |             |         |          |          |                        |
| 338  |             |         |          |          |                        |
| 357  | D7504       | 0.3048  |          | 0.02     |                        |
| 391  |             |         |          |          |                        |
| 445  | D6563       | 0.1874  |          | -0.34    |                        |
| 551  |             |         |          |          |                        |
| 555  |             |         |          |          |                        |
| 558  |             |         |          |          |                        |
| 663  |             |         |          |          |                        |
| 913  |             |         |          |          |                        |
| 963  |             |         |          |          |                        |
| 1041 | In house    | 0.302   |          | 0.01     |                        |
| 1067 | D3797       | 0.008   |          | -0.88    |                        |
| 1081 |             | 0.319   |          | 0.06     |                        |
| 1107 | D7504       | 0.2034  |          | -0.29    |                        |
| 1201 | D3797       | 0.246   |          | -0.16    |                        |
| 1291 | D7504       | 0.4860  |          | 0.56     |                        |
| 1294 |             |         |          |          |                        |
| 1357 |             |         |          |          |                        |
| 1434 |             |         |          |          |                        |
| 1538 |             |         |          |          |                        |
| 1866 |             |         |          |          |                        |
| 1880 |             |         |          |          |                        |
| 9008 |             |         |          |          |                        |
| 0000 |             |         |          |          |                        |
|      | normality   | OK      |          |          |                        |
|      | n           | 14      |          |          |                        |
|      | outliers    | 0       |          |          |                        |
|      | mean (n)    | 0.2998  |          |          |                        |
|      | st.dev. (n) | 0.13280 |          |          |                        |
|      | R(calc.)    | 0.3719  |          |          |                        |
|      | R(D7504:16) | 0.9309  |          |          |                        |
|      | (21001.10)  | 0.0000  |          |          |                        |





## Determination of Non-aromatics on o-Xylene sample #16201; results in %M/M.

| lab          | method         | value           | mark z(targ)  | remarks                    |
|--------------|----------------|-----------------|---------------|----------------------------|
| 52           | D7504          | 0.0846          | 0.09          |                            |
| 150          | D3797          | 0.104           | 0.98          |                            |
| 171          | D3797          | 0.052           | -1.41         |                            |
| 174          | D6563          | 0.0854          | 0.12          |                            |
| 311          | D3797          | 0.075           | -0.35         |                            |
| 323          | D5917mod.      | 0.0488          | -1.55         |                            |
| 333          |                |                 |               |                            |
| 338          |                |                 |               |                            |
| 357          | D7504          | 0.1088          | 1.20          |                            |
| 391          | D2360          | 0.06            | -1.04         |                            |
| 445          | D6563          | 0.0506          | -1.47         |                            |
| 551          |                |                 |               |                            |
| 555          |                |                 |               |                            |
| 558          |                |                 |               |                            |
| 663          | D7504          | 0.0988          | 0.74          |                            |
| 913          | D3797          | 0.0700          | -0.58         |                            |
| 963          |                |                 |               |                            |
| 1041         | In house       | 0.097           | 0.65          |                            |
| 1067         | D3797          | 0.084           | 0.06          |                            |
| 1081         | D7504          | 0.0959          | 0.60          |                            |
| 1107         | D7504          | 0.1203          | 1.72          |                            |
| 1201<br>1291 | D3797<br>D7504 | 0.067<br>0.0959 | -0.72<br>0.60 |                            |
| 1291         | D7504          |                 | 0.60          |                            |
| 1357         |                |                 |               |                            |
| 1434         | D3797          | 0.0707          | -0.55         |                            |
| 1538         | D7504          | 0.0707          | 0.92          |                            |
| 1866         | D7304          | 0.1027          | 0.92          |                            |
| 1880         |                |                 |               |                            |
| 9008         |                |                 |               |                            |
| 0000         |                |                 |               |                            |
|              | normality      | OK              |               |                            |
|              | n              | 19              |               |                            |
|              | outliers       | 0               |               |                            |
|              | mean (n)       | 0.0827          |               |                            |
|              | st.dev. (n)    | 0.02111         |               |                            |
|              | R(calc.)       | 0.0591          |               |                            |
|              | R(D3797:05)    | 0.0611          |               | compare R(D7504:16)=0.0096 |
|              | ,              |                 |               |                            |





## Determination of Appearance on p-Xylene sample #16202;

| lab  | method   | value                   | mark | z(targ) | remarks |
|------|----------|-------------------------|------|---------|---------|
| 52   | D4176    | Pass                    |      |         |         |
| 150  | E2680    | Pass                    |      |         |         |
| 171  | E2680    | Pass                    |      |         |         |
| 174  | E2680    | CFSM                    |      |         |         |
| 311  | E2680    | pass                    |      |         |         |
| 323  | E2680    | clear & bright          |      |         |         |
| 333  |          |                         |      |         |         |
| 338  | Visual   | Clear and Bright        |      |         |         |
| 357  | E2680    | Pass                    |      |         |         |
| 391  |          |                         |      |         |         |
| 445  | E2680    | PASS                    |      |         |         |
| 551  |          |                         |      |         |         |
| 555  |          |                         |      |         |         |
| 558  |          |                         |      |         |         |
| 663  | E2680    | Pass                    |      |         |         |
| 913  | E2680    | CFSM                    |      |         |         |
| 963  | E2680    | Pass                    |      |         |         |
| 1041 |          |                         |      |         |         |
| 1067 | E2680    | Pass                    |      |         |         |
| 1081 | Visual   | b/c                     |      |         |         |
| 1107 | E2680    | pass                    |      |         |         |
| 1201 |          |                         |      |         |         |
| 1291 | D5136    | Clear Free of Sediments |      |         |         |
| 1294 | Visual   | clear                   |      |         |         |
| 1357 | Visual   | Clear & Bright          |      |         |         |
| 1434 | E2680    | clear liq               |      |         |         |
| 1538 | Visual   | C&B                     |      |         |         |
| 1866 |          |                         |      |         |         |
| 1880 | D4176    | Pass                    |      |         |         |
| 9008 | E2680    | Clear                   |      |         |         |
|      | n        | 22                      |      |         |         |
|      | outliers | 0                       |      |         |         |
|      | mean (n) | Pass                    |      |         |         |
|      | ` '      |                         |      |         |         |

C&B = Clear and Bright
CFSM = Clear and Free From Suspended Matter

## Determination of Organic Chloride on p-Xylene sample #16202; results in mg/kg.

| lab  | method       | value  | mark    | z(targ) | remarks |
|------|--------------|--------|---------|---------|---------|
| 52   | D5194        | <1     |         |         |         |
| 150  | D7359        | 0.26   |         | -0.18   |         |
| 171  | D5808        | <1     |         |         |         |
| 174  |              |        |         |         |         |
| 311  | D5808        | <1     |         |         |         |
| 323  | D5808        | <1     |         |         |         |
| 333  |              |        |         |         |         |
| 338  |              |        |         |         |         |
| 357  |              |        |         |         |         |
| 391  |              |        |         |         |         |
| 445  | IP510        | 0.7    |         | 0.77    |         |
| 551  |              |        |         |         |         |
| 555  |              |        |         |         |         |
| 558  |              |        |         |         |         |
| 663  | D5808        | 0.1    |         | -0.52   |         |
| 913  |              |        |         |         |         |
| 963  | D5808        | 0.5    |         | 0.34    |         |
| 1041 | D5808        | <1.0   |         |         |         |
| 1067 | UOP779       | 0.3    |         | -0.09   |         |
| 1081 | D5808        | 0.14   |         | -0.43   |         |
| 1107 |              |        |         |         |         |
| 1201 |              |        |         |         |         |
| 1291 | D5808        | 0.4355 |         | 0.20    |         |
| 1294 |              |        |         |         |         |
| 1357 | UOP779       | 0.43   |         | 0.19    |         |
| 1434 | D7536        | 2.59   | D(0.01) | 4.84    |         |
| 1538 | UOP779       | 0.44   |         | 0.21    |         |
| 1866 |              |        |         |         |         |
| 1880 | D7359        | 0.2    |         | -0.30   |         |
| 9008 | D5808        | 0.25   |         | -0.20   |         |
|      | normality    | OK     |         |         |         |
|      | n            | 11     |         |         |         |
|      | outliers     | 1      |         |         |         |
|      | mean (n)     | 0.341  |         |         |         |
|      | st.dev. (n)  | 0.1777 |         |         |         |
|      | R(calc.)     | 0.498  |         |         |         |
|      | R(D5808:09a) | 1.300  |         |         |         |
|      |              |        |         |         |         |





## Determination of Colour Pt/Co on p-Xylene sample #16202;

| lab  | method      | value   | mark z(targ) | remarks                  |
|------|-------------|---------|--------------|--------------------------|
| 52   | D5386       | 6.3     | -0.03        |                          |
| 150  | D5386       | 6.4     | 0.02         |                          |
| 171  | D5386       | 6       | -0.18        |                          |
| 174  | D5386       | 7.41    | 0.53         |                          |
| 311  | D5386       | 8       | 0.82         |                          |
| 323  | D1209       | 5       | -0.68        |                          |
| 333  |             |         |              |                          |
| 338  |             |         |              |                          |
| 357  | D1209       | < 5     |              |                          |
| 391  |             |         |              |                          |
| 445  | D1209       | 5       | -0.68        |                          |
| 551  |             |         |              |                          |
| 555  |             |         |              |                          |
| 558  |             |         |              |                          |
| 663  | D5386       | 7       | 0.32         |                          |
| 913  | D5386       | 4       | -1.18        |                          |
| 963  | D1209       | 5       | -0.68        |                          |
| 1041 | ISO6271     | 10.5    | 2.08         |                          |
| 1067 | D5386       | 6.3     | -0.03        |                          |
| 1081 | D5386       | 7       | 0.32         |                          |
| 1107 | D5386       | 1.1     | -2.64        |                          |
| 1201 |             |         |              |                          |
| 1291 | D1209       | 7       | 0.32         |                          |
| 1294 |             |         |              |                          |
| 1357 | D1209       | 3       | -1.68        |                          |
| 1434 | D5386       | 13      | 3.33         |                          |
| 1538 | D1209       | 3       | -1.68        |                          |
| 1866 |             |         |              |                          |
| 1880 | D5386       | 8.3     | 0.98         |                          |
| 9008 | D5386       | 7.8     | 0.72         |                          |
|      | normality   | suspect |              |                          |
|      | n           | 20      |              |                          |
|      | outliers    | 0       |              |                          |
|      | mean (n)    | 6.36    |              |                          |
|      | st.dev. (n) | 2.652   |              |                          |
|      | R(calc.)    | 7.42    |              |                          |
|      | R(D5386:10) | 5.58    |              | compare R(D1209:05)=7.00 |
|      | , ,         |         |              |                          |





## Determination of Density at 20°C on p-Xylene sample #16202; results in kg/L.

| lab  | method         | value    | mark    | z(targ) | remarks |
|------|----------------|----------|---------|---------|---------|
| 52   | D4052          | 0.8610   |         | 0.10    |         |
| 150  | D4052          | 0.8611   |         | 0.66    |         |
| 171  | D4052          | 0.8610   |         | 0.10    |         |
| 174  | D4052          | 0.86111  |         | 0.72    |         |
| 311  | D4052          | 0.86098  |         | -0.01   |         |
| 323  | D4052          | 0.8610   |         | 0.10    |         |
| 333  | ISO12185       | 0.8609   |         | -0.46   |         |
| 338  | ISO12185       | 0.8610   |         | 0.10    |         |
| 357  | D4052          | 0.86090  |         | -0.46   |         |
| 391  |                |          |         |         |         |
| 445  | D4052          | 0.8610   |         | 0.10    |         |
| 551  |                |          |         |         |         |
| 555  |                |          |         |         |         |
| 558  |                |          |         |         |         |
| 663  | D4052          | 0.86101  |         | 0.16    |         |
| 913  | D4052          | 0.8609   |         | -0.46   |         |
| 963  | ISO12185       | 0.8610   |         | 0.10    |         |
| 1041 | ISO12185       | 0.8610   |         | 0.10    |         |
| 1067 | D4052          | 0.8610   |         | 0.10    |         |
| 1081 |                |          |         |         |         |
| 1107 | D4052          | 0.86098  |         | -0.01   |         |
| 1201 |                |          |         |         |         |
| 1291 | D4052          | 0.8610   |         | 0.10    |         |
| 1294 | D4052          | 0.86102  |         | 0.21    |         |
| 1357 | D4052          | 0.8609   |         | -0.46   |         |
| 1434 | D4052          | 0.86528  | R(0.01) | 24.07   |         |
| 1538 | D4052          | 0.861    |         | 0.10    |         |
| 1866 | D. 40-0        |          |         |         |         |
| 1880 | D4052          | 0.8609   |         | -0.46   |         |
| 9008 | D4052          | 0.8609   |         | -0.46   |         |
|      | normality      | OK       |         |         |         |
|      | n              | 22       |         |         |         |
|      | outliers       | 1        |         |         |         |
|      | mean (n)       | 0.86098  |         |         |         |
|      | st.dev. (n)    | 0.000060 |         |         |         |
|      | R(calc.)       | 0.00017  |         |         |         |
|      | R(ISO12185:96) | 0.00050  |         |         |         |
|      |                |          |         |         |         |





## Determination of Distillation on p-Xylene sample #16202; results in °C

| 52         D850         Automated         137.8         0.10         1           150         D850         Automated         137.6         -0.48         1           171         D850         Automated         138.0         0.68         1           174         D1078         Automated         137.8         0.10         1           311         D850         Automated         137.5         -0.77         1           323         D850         Manual         137.8         0.10         1           333         D850         Automated         137.2         -1.64         1           338         D850         Automated         137.7         ex         -0.19         1           357         D850         Automated         137.9         0.39         1           391 | 50%rec         mark         z(targ)         DP         mark         z(targ)           138.3         0.12         138.3         -0.69           138.3         0.12         138.4         0.03           138.3         0.12         138.4         0.03           138.3         0.12         138.4         0.03           138.3         0.12         138.5         0.74           138.3         0.12         138.5         0.74           138.3         0.12         138.4         0.03           137.9         ex         -2.43         137.9         ex         -3.56 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 150     D850     Automated     137.6     -0.48     137.1       171     D850     Automated     138.0     0.68     138.0       174     D1078     Automated     137.8     0.10     138.0       311     D850     Automated     137.5     -0.77     138.0       323     D850     Manual     137.8     0.10     138.0       333     D850     Automated     137.2     -1.64     138.0       338     D850     Automated     137.7     ex     -0.19     138.0       357     D850     Automated     137.9     0.39     138.0       391                                                                                                                                                                                                                                                      | 138.3       0.12       138.4       0.03         138.3       0.12       138.4       0.03         138.3       0.12       138.4       0.03         138.3       0.12       138.5       0.74         138.3       0.12       138.5       0.74         138.3       0.12       138.4       0.03         137.9       ex       -2.43       137.9       ex       -3.56                                                                                                                                                                                                          |
| 171     D850     Automated     138.0     0.68     138.0       174     D1078     Automated     137.8     0.10     138.0       311     D850     Automated     137.5     -0.77     138.0       323     D850     Manual     137.8     0.10     138.0       333     D850     Automated     137.2     -1.64     138.0       338     D850     Automated     137.7     ex     -0.19     138.0       357     D850     Automated     137.9     0.39     138.0       391                                                                                                                                                                                                                                                                                                                     | 138.3       0.12       138.4       0.03         138.3       0.12       138.4       0.03         138.3       0.12       138.5       0.74         138.3       0.12       138.5       0.74         138.3       0.12       138.4       0.03         137.9       ex       -2.43       137.9       ex       -3.56                                                                                                                                                                                                                                                          |
| 174     D1078     Automated     137.8     0.10     131       311     D850     Automated     137.5     -0.77     133       323     D850     Manual     137.8     0.10     1333       333     D850     Automated     137.2     -1.64     1338       338     D850     Automated     137.7     ex     -0.19     1335       357     D850     Automated     137.9     0.39     1335       391                                                                                                                                                                                                                                                                                                                                                                                           | 138.3       0.12       138.4       0.03         138.3       0.12       138.5       0.74         138.3       0.12       138.5       0.74         138.3       0.12       138.4       0.03         137.9       ex       -2.43       137.9       ex       -3.56                                                                                                                                                                                                                                                                                                          |
| 311     D850     Automated     137.5     -0.77     1323       323     D850     Manual     137.8     0.10     1333       333     D850     Automated     137.2     -1.64     1338       338     D850     Automated     137.7     ex     -0.19     1335       357     D850     Automated     137.9     0.39     1335       391                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 138.3     0.12     138.5     0.74       138.3     0.12     138.5     0.74       138.3     0.12     138.4     0.03       137.9     ex     -2.43     137.9     ex     -3.56                                                                                                                                                                                                                                                                                                                                                                                            |
| 323     D850     Manual     137.8     0.10     1333       333     D850     Automated     137.2     -1.64     1338       338     D850     Automated     137.7     ex     -0.19     1335       357     D850     Automated     137.9     0.39     1335       391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 138.3       0.12       138.5       0.74         138.3       0.12       138.4       0.03         137.9       ex       -2.43       137.9       ex       -3.56                                                                                                                                                                                                                                                                                                                                                                                                          |
| 333     D850     Automated     137.2     -1.64     13       338     D850     Automated     137.7     ex     -0.19     13       357     D850     Automated     137.9     0.39     13       391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 138.3 0.12 138.4 0.03<br>137.9 ex -2.43 137.9 ex -3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 338 D850 Automated 137.7 ex -0.19 13 357 D850 Automated 137.9 0.39 13 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 137.9 ex -2.43 137.9 ex -3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 357 D850 Automated 137.9 0.39 13 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138.3 0.12 138.3 -0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 138.1 -1.16 138.1 -2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.3 0.12 138.4 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.3 0.12 138.6 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.3 0.12 138.4 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.3 0.12 138.6 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.1 -1.16 138.2 -1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 137.9 ex -2.43 137.9 ex -3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.05 -1.48 138.13 -1.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.2 -0.52 138.3 -0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.4 0.76 138.5 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 138.5 1.39 138.6 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.4 0.76 138.5 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9000 D030 Automated 137.9 0.39 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 130.4 0.70 130.3 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| normality OK O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ок ок                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0+2ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.107 0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.30 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ` ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.44 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 139 т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Initial Boiling Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8 Kemel Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 138.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 138 - A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 137.5 + A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Δ Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 137 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 136.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1007 1107 1238 333 1007 1007 1007 1007 1007 1007 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 8 E 8 8 8 136.5 137 137.5 138 138.5 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 139 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 50% recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5 Kernel Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 138.5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Δ 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 138 + <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 137.5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 137 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 136.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1231 1231 1231 1231 1231 1231 1231 1231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 139 т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 Kemel Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dry Doint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Δ Δ Δ Δ Δ Δ Δ 2.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dry Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dry Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 138.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 138.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 138.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 138.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 138.5 A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 138.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 138.5 - A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## Determination of Distillation range on p-Xylene sample #16202; results in °C

| lab         | method       | value | mark        | z(targ)   | remarks            |
|-------------|--------------|-------|-------------|-----------|--------------------|
| 52          | D850         | 0.5   |             | -0.34     |                    |
| 150         | D850         | 0.8   |             | 0.45      |                    |
| 171         | D850         | 0.4   |             | -0.60     |                    |
| 174         | D1075        | 0.6   |             | -0.07     |                    |
| 311         | D850         | 1.0   |             | 0.98      |                    |
| 323         | D850         | 0.7   |             | 0.19      |                    |
| 333         | D850         | 1.2   |             | 1.51      |                    |
| 338         | D850         | 0.2   | ex          | -1.13     | excluded; see §4.1 |
| 357         | D850         | 0.4   |             | -0.60     |                    |
| 391         |              |       |             |           |                    |
| 445         | D850         | 0.4   |             | -0.60     |                    |
| 551         |              |       |             |           |                    |
| 555         |              |       |             |           |                    |
| 558         | DOFO         |       |             | 0.24      |                    |
| 663         | D850         | 0.5   |             | -0.34     |                    |
| 913         | D850         | 0.6   |             | -0.07     |                    |
| 963<br>1041 | D850         | 0.4   |             | -0.60<br> |                    |
| 1041        | D850         | 0.7   |             | 0.19      |                    |
| 1081        | D030         | U.1   |             | 0.19      |                    |
| 1107        | D850         | 0.9   |             | 0.72      |                    |
| 1201        | D000         |       |             |           |                    |
| 1291        | D850         | 0.1   | ex          | -1.40     | excluded; see §4.1 |
| 1294        | D850         | 0.61  | <b>5</b> /( | -0.05     | 5.10.10.00 g       |
| 1357        |              |       |             |           |                    |
| 1434        |              |       |             |           |                    |
| 1538        | D850         | 0.4   |             | -0.60     |                    |
| 1866        |              |       |             |           |                    |
| 1880        | D850         | 0.6   |             | -0.07     |                    |
| 9008        | D850         | 0.6   |             | -0.07     |                    |
|             | normality    | OK    |             |           |                    |
|             | n            | 18    |             |           |                    |
|             | outliers     | 0+2ex |             |           |                    |
|             | mean (n)     | 0.63  |             |           |                    |
|             | st.dev. (n)  | 0.227 |             |           |                    |
|             | R(calc.)     | 0.64  |             |           |                    |
|             | R(D850-A:16) | 1.06  |             |           |                    |
|             |              |       |             |           |                    |





## Determination of Sulphur on p-Xylene sample #16202; results in mg/kg.

| lab  | method      | value  | mark | z(targ) | remarks              |
|------|-------------|--------|------|---------|----------------------|
| 52   | D7183       | 0.62   | mark | -0.16   | Tomanio              |
| 150  | D5453       | 0.6    |      | -0.37   |                      |
| 171  | D7183       | 0.85   |      | 2.16    |                      |
| 174  | D5453       | 0.611  |      | -0.26   |                      |
| 311  | D7183       | 0.76   |      | 1.25    |                      |
| 323  | D5453       | <1     |      |         |                      |
| 333  | 20700       |        |      |         |                      |
| 338  | ISO20846    | 0.4    |      | -2.39   |                      |
| 357  | D7183       | 0.51   |      | -1.28   |                      |
| 391  | D7 100      |        |      | 1.20    |                      |
| 445  | D5453       | <1     |      |         |                      |
| 551  | D0100       |        |      |         |                      |
| 555  |             |        |      |         |                      |
| 558  |             |        |      |         |                      |
| 663  | D5453       | 0.37   |      | -2.69   |                      |
| 913  | D5453       | 0.55   |      | -0.87   |                      |
| 963  | D7183       | 1.038  | С    | 4.06    | first reported: 1.38 |
| 1041 | D5453       | 0.46   | J    | -1.78   | mot reported. 1.00   |
| 1067 | D5453       | 0.67   |      | 0.34    |                      |
| 1081 | D7183       | 0.65   |      | 0.14    |                      |
| 1107 | D5453       | 0.96   |      | 3.27    |                      |
| 1201 | 20100       |        |      |         |                      |
| 1291 | D5453       | 0.6174 |      | -0.19   |                      |
| 1294 | D5453       | 0.615  |      | -0.21   |                      |
| 1357 | D5453       | 0.59   |      | -0.47   |                      |
| 1434 | D7183       | 0.61   |      | -0.27   |                      |
| 1538 | D7183       | 0.58   |      | -0.57   |                      |
| 1866 |             |        |      |         |                      |
| 1880 | D5453       | 0.8    |      | 1.65    |                      |
| 9008 | D5453       | 0.50   |      | -1.38   |                      |
|      |             |        |      |         |                      |
|      | normality   | OK     |      |         |                      |
|      | n           | 21     |      |         |                      |
|      | outliers    | 0      |      |         |                      |
|      | mean (n)    | 0.636  |      |         |                      |
|      | st.dev. (n) | 0.1679 |      |         |                      |
|      | R(calc.)    | 0.470  |      |         |                      |
|      | R(D7183:16) | 0.277  |      |         |                      |
|      | , ,         |        |      |         |                      |





## Determination of Purity on p-Xylene sample #16202; results in %M/M.

| lah           | moth od           | value             | manula.  | =/towa\                | no montro                  |
|---------------|-------------------|-------------------|----------|------------------------|----------------------------|
| <b>lab</b> 52 | method<br>D5917   | value             | mark     | <b>z(targ)</b><br>0.46 | remarks                    |
| 52<br>150     | D3798             | 99.61<br>99.60    |          | -0.20                  |                            |
| 171           | D5790<br>D5917    | 99.73             | R(0.01)  | 8.40                   |                            |
| 174           | D6563             | 99.5937           | 14(0.01) | -0.62                  |                            |
| 311           | D3798             | 99.62             |          | 1.12                   |                            |
| 323           | D5917             | 99.587            |          | -1.06                  |                            |
| 333           | D5917             | 99.60             |          | -0.20                  |                            |
| 338           |                   |                   |          |                        |                            |
| 357           | D7504             | 99.614            |          | 0.73                   |                            |
| 391           |                   |                   |          |                        |                            |
| 445           | D6563/D2360       | 99.68             | R(0.01)  | 5.09                   |                            |
| 551           |                   |                   |          |                        |                            |
| 555           |                   |                   |          |                        |                            |
| 558           | 5-0.1-            |                   |          |                        |                            |
| 663           | D5917             | 99.602            | D(0.04)  | -0.07                  |                            |
| 913           | D5917             | 99.71             | R(0.01)  | 7.08                   |                            |
| 963<br>1041   | D7504<br>In house | 99.5764<br>99.609 |          | -1.76<br>0.40          |                            |
| 1041          | In house          | 99.609            |          | 0.46                   |                            |
| 1081          | III IIOuse        | 99.593            |          | -0.66                  |                            |
| 1107          | D7504             | 99.636            |          | 2.18                   |                            |
| 1201          | 27001             |                   |          |                        |                            |
| 1291          | D7504             | 99.5843           |          | -1.24                  |                            |
| 1294          | D5917             | 99.585            |          | -1.19                  |                            |
| 1357          | In house          | 99.64             |          | 2.45                   |                            |
| 1434          | D3798             | 99.59142          |          | -0.77                  |                            |
| 1538          | D3798             | 99.6163           |          | 0.88                   |                            |
| 1866          |                   |                   |          |                        |                            |
| 1880          | D3798             | 99.590            |          | -0.86                  |                            |
| 9008          | UOP720            | 99.6019           |          | -0.07                  |                            |
|               | normality         | OK                |          |                        |                            |
|               | n                 | 20                |          |                        |                            |
|               | outliers          | 3                 |          |                        |                            |
|               | mean (n)          | 99.6030           |          |                        |                            |
|               | st.dev. (n)       | 0.01674           |          |                        |                            |
|               | R(calc.)          | 0.0469            |          |                        |                            |
|               | R(D5917:15e1)     | 0.0423            |          |                        | compare R(D7504:16)=0.0173 |
|               |                   |                   |          |                        |                            |





## Determination of o-Xylene on p-Xylene sample #16202; results in %M/M.

| lab        | method         | value            | mark z(targ    | ) remarks                  |
|------------|----------------|------------------|----------------|----------------------------|
| 52         | D5917          | 0.076            | -0.04          | 1                          |
| 150        | D3798          | 0.078            | 0.02           | 2                          |
| 171        | D5917          | 0.077            | -0.01          |                            |
| 174        | D6563          | 0.0980           | 0.59           |                            |
| 311        | D3798          | 0.076            | -0.04          |                            |
| 323        | D5917          | 0.0791           | 0.05           |                            |
| 333        | D5917          | 0.077            | -0.0           |                            |
| 338        |                |                  |                |                            |
| 357        | D7504          | 0.0773           | 0.00           |                            |
| 391        | D              |                  |                |                            |
| 445        | D6563/D2360    | 0.069            | -0.24          | ł                          |
| 551        |                |                  |                | -                          |
| 555        |                |                  |                | -                          |
| 558<br>663 | DE017          | 0.0740           | 0.10           |                            |
| 663<br>913 | D5917<br>D5917 | 0.0740<br>0.0750 | -0.10<br>-0.07 |                            |
| 963        | D7504          | 0.0730           | -0.07          |                            |
| 1041       | In house       | 0.0748           | -0.0           |                            |
| 1041       | In house       | 0.077            | -0.0           |                            |
| 1081       | III IIOuse     | 0.077            | -0.0           |                            |
| 1107       | D7504          | 0.0771           | -0.0           |                            |
| 1201       | D7004          |                  |                |                            |
| 1291       | D7504          | 0.0768           | -0.02          |                            |
| 1294       | D5917          | 0.076            | -0.04          |                            |
| 1357       | In house       | 0.08             | 0.07           |                            |
| 1434       | D3798          | 0.07886          | 0.04           | <b>\</b>                   |
| 1538       | D7504          | 0.0743           | -0.09          |                            |
| 1866       |                |                  |                | -                          |
| 1880       | D3798          | 0.0791           | 0.05           |                            |
| 9008       | UOP720         | 0.0774           | 0.00           |                            |
|            | normality      | not OK           |                |                            |
|            | n              | 23               |                |                            |
|            | outliers       | 0                |                |                            |
|            | mean (n)       | 0.0774           |                |                            |
|            | st.dev. (n)    | 0.00504          |                |                            |
|            | R(calc.)       | 0.0141           |                | D/D==0.4.0\\ 0.0000        |
|            | R(D5917:15e1)  | 0.0987           |                | compare R(D7504:16)=0.0063 |
|            |                |                  |                |                            |





## Determination of m-Xylene on p-Xylene sample #16202; results in %M/M.

| lab         | method            | value           | mark    | z(targ)       | remarks                    |
|-------------|-------------------|-----------------|---------|---------------|----------------------------|
| 52          | D5917             | 0.189           |         | -0.24         |                            |
| 150         | D3798             | 0.1985          |         | 0.18          |                            |
| 171         | D5917             | 0.166           |         | -1.26         |                            |
| 174         | D6563             | 0.1948          |         | 0.01          |                            |
| 311         | D3798             | 0.172           |         | -0.99         |                            |
| 323         | D5917             | 0.2038          |         | 0.41          |                            |
| 333         | D5917             | 0.199           |         | 0.20          |                            |
| 338         |                   |                 |         |               |                            |
| 357         | D7504             | 0.1852          |         | -0.41         |                            |
| 391         |                   |                 |         |               |                            |
| 445         | D6563/D2360       | 0.142           | R(0.05) | -2.31         |                            |
| 551         |                   |                 |         |               |                            |
| 555         |                   |                 |         |               |                            |
| 558         | D 50.47           |                 |         |               |                            |
| 663         | D5917             | 0.1989          | D(0.04) | 0.19          |                            |
| 913         | D5917             | 0.1052          | R(0.01) | -3.94         |                            |
| 963<br>1041 | D7504<br>In house | 0.2022<br>0.188 |         | 0.34<br>-0.29 |                            |
| 1041        | In house          | 0.100           |         | 0.29          |                            |
| 1087        | III House         | 0.190           |         | 0.07          |                            |
| 1107        | D7504             | 0.2028          |         | -0.15         |                            |
| 1201        | D1304             | 0.1312          |         | -0.15         |                            |
| 1291        | D7504             | 0.2062          |         | 0.52          |                            |
| 1294        | D5917             | 0.226           |         | 1.39          |                            |
| 1357        | In house          | 0.18            |         | -0.64         |                            |
| 1434        | D3798             | 0.2020          |         | 0.33          |                            |
| 1538        | D7504             | 0.1863          |         | -0.36         |                            |
| 1866        |                   |                 |         |               |                            |
| 1880        | D3798             | 0.2021          |         | 0.34          |                            |
| 9008        | UOP720            | 0.1945          |         | 0.00          |                            |
|             | normality         | suspect         |         |               |                            |
|             | n                 | 21              |         |               |                            |
|             | outliers          | 2               |         |               |                            |
|             | mean (n)          | 0.1945          |         |               |                            |
|             | st.dev. (n)       | 0.01281         |         |               |                            |
|             | R(calc.)          | 0.0359          |         |               |                            |
|             | R(D5917:15e1)     | 0.0635          |         |               | compare R(D7504:16)=0.0258 |
|             |                   |                 |         |               |                            |





## Determination of Ethylbenzene on p-Xylene sample #16202; results in %M/M.

| lab  | method        | value   | mark | z(targ) | remarks                                |
|------|---------------|---------|------|---------|----------------------------------------|
| 52   | D5917         | 0.095   |      | 0.33    |                                        |
| 150  | D3798         | 0.104   |      | 1.61    |                                        |
| 171  | D5917         | <0.001  |      | <-13.03 | possibly a false negative test result? |
| 174  | D6563         | 0.0900  |      | -0.38   |                                        |
| 311  | D3798         | 0.095   |      | 0.33    |                                        |
| 323  | D5917         | 0.0961  |      | 0.49    |                                        |
| 333  | D5917         | 0.094   |      | 0.19    |                                        |
| 338  |               |         |      |         |                                        |
| 357  | D7504         | 0.0956  |      | 0.42    |                                        |
| 391  |               |         |      |         |                                        |
| 445  | D6563/D2360   | 0.082   |      | -1.52   |                                        |
| 551  |               |         |      |         |                                        |
| 555  |               |         |      |         |                                        |
| 558  |               |         |      |         |                                        |
| 663  | D5917         | 0.0934  |      | 0.10    |                                        |
| 913  | D5917         | 0.0868  |      | -0.84   |                                        |
| 963  | D7504         | 0.0921  |      | -0.08   |                                        |
| 1041 | In house      | 0.092   |      | -0.10   |                                        |
| 1067 | In house      | 0.091   |      | -0.24   |                                        |
| 1081 |               | 0.0925  |      | -0.02   |                                        |
| 1107 | D7504         | 0.0847  | С    | -1.13   | first reported: 0.0647                 |
| 1201 |               |         |      |         |                                        |
| 1291 | D7504         | 0.0992  |      | 0.93    |                                        |
| 1294 | D5917         | 0.09    |      | -0.38   |                                        |
| 1357 | In house      | 0.09    |      | -0.38   |                                        |
| 1434 | D3798         | 0.09602 |      | 0.48    |                                        |
| 1538 | D7504         | 0.0897  |      | -0.42   |                                        |
| 1866 |               |         |      |         |                                        |
| 1880 | D3798         | 0.0958  |      | 0.44    |                                        |
| 9008 | UOP720        | 0.0939  |      | 0.17    |                                        |
|      | normality     | suspect |      |         |                                        |
|      | n             | 22 '    |      |         |                                        |
|      | outliers      | 0       |      |         |                                        |
|      | mean (n)      | 0.0927  |      |         |                                        |
|      | st.dev. (n)   | 0.00474 |      |         |                                        |
|      | R(calc.)      | 0.0133  |      |         |                                        |
|      | R(D5917:15e1) | 0.0197  |      |         | compare R(D7504:16)=0.0110             |
|      | ,             |         |      |         | , , ,                                  |





## Determination of Styrene on p-Xylene sample #16202; results in %M/M.

| 150                                                                                                                                                                                                                                                                                                                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 171       D5917       0.006       0.78         174       D6563       0.0051       -1.06         311       D3798       0.006       0.78         323       D5917       0.0074       DG(0.05)       3.64         333           357       D7504       0.0054       -0.44         391           445           551           555           558           663       D5917       <0.001 |  |
| 174       D6563       0.0051       -1.06         311       D3798       0.006       0.78         323       D5917       0.0074       DG(0.05)       3.64         333           357       D7504       0.0054       -0.44         391           445           551           555           558                                                                                       |  |
| 311     D3798     0.006     0.78       323     D5917     0.0074     DG(0.05)     3.64       333         357     D7504     0.0054     -0.44       391         445         551         558         663     D5917     <0.001                                                                                                                                                       |  |
| 323 D5917 0.0074 DG(0.05) 3.64 333 357 D7504 0.0054 -0.44 391 445 551 555 558 663 D5917 <0.001 <-9.42 possibly a false negative test result? 913 D5917 0.0049 -1.46 963 D7504 0.0052 -0.85 1041 In house 0.006 0.78 1067 In house 0.007 DG(0.05) 2.82 1081 0 ex -11.46 test result excluded; zero is not a real value 1107 D7504 0.0056 -0.04                                   |  |
| 333                                                                                                                                                                                                                                                                                                                                                                             |  |
| 338 357 D7504 0.0054 -0.44 391 445 551 555 558 663 D5917 0.0049 913 D5917 0.0049 913 D5917 0.0049 -1.46 963 D7504 0.0052 -0.85 1041 In house 0.006 0.78 1067 In house 0.007 DG(0.05) 2.82 1081 0 ex -11.46 test result excluded; zero is not a real value 1107 D7504 0.0056 -0.04                                                                                               |  |
| 357 D7504 0.0054 -0.44 391                                                                                                                                                                                                                                                                                                                                                      |  |
| 391                                                                                                                                                                                                                                                                                                                                                                             |  |
| 445           551           555           558           663       D5917       <0.001                                                                                                                                                                                                                                                                                            |  |
| 551           555           558           663       D5917       <0.001                                                                                                                                                                                                                                                                                                          |  |
| 555             558             663         D5917         <0.001                                                                                                                                                                                                                                                                                                                |  |
| 558             663         D5917         <0.001                                                                                                                                                                                                                                                                                                                                |  |
| 663       D5917       <0.001                                                                                                                                                                                                                                                                                                                                                    |  |
| 913 D5917 0.0049 -1.46 963 D7504 0.0052 -0.85 1041 In house 0.006 0.78 1067 In house 0.007 DG(0.05) 2.82 1081 0 ex -11.46 test result excluded; zero is not a real value 1107 D7504 0.0056 -0.04                                                                                                                                                                                |  |
| 963       D7504       0.0052       -0.85         1041       In house       0.006       0.78         1067       In house       0.007       DG(0.05)       2.82         1081       0       ex       -11.46       test result excluded; zero is not a real value         1107       D7504       0.0056       -0.04                                                                 |  |
| 1041     In house     0.006     0.78       1067     In house     0.007     DG(0.05)     2.82       1081     0     ex     -11.46     test result excluded; zero is not a real value       1107     D7504     0.0056     -0.04                                                                                                                                                    |  |
| 1067       In house       0.007       DG(0.05)       2.82         1081       0       ex       -11.46       test result excluded; zero is not a real value         1107       D7504       0.0056       -0.04                                                                                                                                                                     |  |
| 1081 0 ex -11.46 test result excluded; zero is not a real value 1107 D7504 0.0056 -0.04                                                                                                                                                                                                                                                                                         |  |
| 1107 D7504 0.0056 -0.04                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1201                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1291<br>1294                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1357<br>1434 D3798 0.00589 0.56                                                                                                                                                                                                                                                                                                                                                 |  |
| 1538 D7504 0.0057 0.17                                                                                                                                                                                                                                                                                                                                                          |  |
| 1866                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1880                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9008                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5550                                                                                                                                                                                                                                                                                                                                                                            |  |
| normality OK                                                                                                                                                                                                                                                                                                                                                                    |  |
| n 11                                                                                                                                                                                                                                                                                                                                                                            |  |
| outliers 2+1ex                                                                                                                                                                                                                                                                                                                                                                  |  |
| mean (n) 0.0056                                                                                                                                                                                                                                                                                                                                                                 |  |
| st.dev. (n) 0.00041                                                                                                                                                                                                                                                                                                                                                             |  |
| R(calc.) 0.0011                                                                                                                                                                                                                                                                                                                                                                 |  |
| R(Horwitz) 0.0014                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                 |  |





## Determination of Toluene on p-Xylene sample #16202; results in %M/M.

| lab        | method        | value   | mark    | z(targ) | remarks                    |
|------------|---------------|---------|---------|---------|----------------------------|
| 52         | D5917         | 0.011   |         | 0.40    |                            |
|            | D3798         | 0.010   |         | -0.19   |                            |
|            | D5917         | 0.002   | R(0.01) | -4.99   |                            |
|            | D6563         | 0.0103  |         | -0.01   |                            |
|            | D3798         | 0.009   |         | -0.79   |                            |
|            | D5917         | 0.0137  |         | 2.02    |                            |
|            | D5917         | 0.011   |         | 0.40    |                            |
| 338        |               |         |         |         |                            |
|            | D7504         | 0.0101  |         | -0.13   |                            |
| 391        | D0500/D0000   |         |         | 4.00    |                            |
|            | D6563/D2360   | 0.008   |         | -1.39   |                            |
| 551        |               |         |         |         |                            |
| 555<br>558 |               |         |         |         |                            |
|            | D5917         | 0.0104  |         | 0.05    |                            |
|            | D5917         | 0.0104  |         | 0.03    |                            |
|            | D7504         | 0.0103  | С       | -0.31   | first reported: 0.032      |
|            | In house      | 0.0030  | O       | 0.40    | mat reported. 0.002        |
|            | In house      | 0.010   |         | -0.19   |                            |
| 1081       |               | 0.0102  |         | -0.07   |                            |
|            | D7504         | 0.0098  |         | -0.31   |                            |
| 1201       |               |         |         |         |                            |
| 1291       | D7504         | 0.0104  |         | 0.05    |                            |
| 1294       | D5917         | 0.01    |         | -0.19   |                            |
|            | In house      | 0.01    |         | -0.19   |                            |
|            | D3798         | 0.01064 |         | 0.19    |                            |
|            | D7504         | 0.0103  |         | -0.01   |                            |
| 1866       |               |         |         |         |                            |
|            | D3798         | 0.0106  |         | 0.16    |                            |
| 9008       | UOP720        | 0.0104  |         | 0.05    |                            |
|            | normality     | not OK  |         |         |                            |
|            | n             | 22      |         |         |                            |
|            | outliers      | 1       |         |         |                            |
|            | mean (n)      | 0.0103  |         |         |                            |
|            | st.dev. (n)   | 0.00100 |         |         |                            |
|            | R(calc.)      | 0.0028  |         |         | D/D7504.40 0.0000          |
|            | R(D5917:15e1) | 0.0047  |         |         | compare R(D7504:16)=0.0009 |





## Determination of Non-aromatics on p-Xylene sample #16202; results in %M/M.

| lab  | method        | value   | mark z(targ) | remarks                    |
|------|---------------|---------|--------------|----------------------------|
| 52   | D5917         | 0.016   | 0.19         |                            |
| 150  | D3798         | 0.017   | 0.28         |                            |
| 171  | D5917         | 0.012   | -0.17        |                            |
| 174  | D6563         | 0.0081  | -0.51        |                            |
| 311  | D3798         | 0.022   | 0.72         |                            |
| 323  | D5917         | 0.0131  | -0.07        |                            |
| 333  |               |         |              |                            |
| 338  |               |         |              |                            |
| 357  | D7504         | 0.0095  | -0.39        |                            |
| 391  |               |         |              |                            |
| 445  | D6563/D2360   | 0.009   | -0.43        |                            |
| 551  |               |         |              |                            |
| 555  |               |         |              |                            |
| 558  |               |         |              |                            |
| 663  | D5917         | 0.0152  | 0.12         |                            |
| 913  | D5917         | 0.0055  | -0.74        |                            |
| 963  | D7504         | 0.0173  | 0.30         |                            |
| 1041 | In house      | 0.018   | 0.36         |                            |
| 1067 | In house      | 0.008   | -0.52        |                            |
| 1081 |               | 0.0184  | 0.40         |                            |
| 1107 | D7504         | 0.0153  | 0.12         |                            |
| 1201 | D==0.4        |         |              |                            |
| 1291 | D7504         | 0.0157  | 0.16         |                            |
| 1294 | D5917         | 0.013   | -0.08        |                            |
| 1357 | D0700         |         |              |                            |
| 1434 | D3798         | 0.01033 | -0.31        |                            |
| 1538 | D7504         | 0.0168  | 0.26         |                            |
| 1866 | D0700         | 0.0400  |              |                            |
| 1880 | D3798         | 0.0162  | 0.20         |                            |
| 9008 | UOP720        | 0.0152  | 0.12         |                            |
|      | normality     | OK      |              |                            |
|      | n             | 21      |              |                            |
|      | outliers      | 0       |              |                            |
|      | mean (n)      | 0.0139  |              |                            |
|      | st.dev. (n)   | 0.00419 |              |                            |
|      | R(calc.)      | 0.0117  |              |                            |
|      | R(D5917:15e1) | 0.0317  |              | compare R(D7504:16)=0.0221 |
|      | ,             |         |              |                            |





## **APPENDIX 2**

## List of number of participants per country

- 2 labs in BELGIUM
- 4 labs in BRAZIL
- 1 lab in CANADA
- 1 lab in FINLAND
- 2 labs in FRANCE
- 1 lab in GERMANY
- 1 lab in INDIA
- 1 lab in ISRAEL
- 1 lab in ITALY
- 2 labs in KUWAIT
- 4 labs in NETHERLANDS
- 1 lab in OMAN
- 1 lab in POLAND
- 3 labs in SAUDI ARABIA
- 1 lab in THAILAND
- 1 lab in UNITED KINGDOM
- 3 labs in UNITED STATES OF AMERICA

#### **APPENDIX 3**

#### Abbreviations:

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test

D(0.05) = straggler in Dixon's outlier test

G(0.01) = outlier in Grubbs' outlier test

G(0.05) = straggler in Grubbs' outlier test

DG(0.01) = outlier in Double Grubbs' outlier test

DG(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test

R(0.05) = straggler in Rosner's outlier test

E = probably an error in calculations

U = test result probably reported in a different unit

W = test result withdrawn on request of participant

ex = test result excluded from calculations

n.a. = not applicable n.e. = not evaluated

n.d. = not detected fr. = first reported

SDS = Safety Data Sheet

#### Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, April 2014
- 2 ASTM E178:02
- 3 ASTM E1301:03
- 4 ISO 5725:86
- 5 ISO 5725, parts 1-6, 1994
- 6 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 8 IP 367:84
- 9 DIN 38402 T41/42
- 10 P.L. Davies, Fr. Z. Anal. Chem, 331, 513, (1988)
- 11 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 12 Analytical Methods Committee Technical brief, No 4 January 2001.
- 13 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, 127, 1359-1364 (2002)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, *Technometrics*, 25(2), 165-172, (1983)
- 15 Horwitz, R. Albert, J. AOAC Int. <u>79-3</u>, 589 (1996)