Results of Proficiency Test Liquefied Propane October 2016

Organised by:Institute for Interlaboratory Studies
Spijkenisse, the NetherlandsAuthor:dr. R.G. Visser

Correctors: ing. A.S. Noordman – de Neef & ing. C.M. Nijssen-Wester Report: iis16S03P

December 2016

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	5
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER TEST/COMPONENT	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	11
4.3	COMPARISON OF THE PROFICIENCY TEST OF OCTOBER 2016 WITH PREVIOUS PTS	11
5	DISCUSSION	12

Appendices:

1.	Data and statistical results	14
2.	Number of participants per country	30
3.	Abbreviations and literature	31

1 INTRODUCTION

Since 2009, the Institute for Interlaboratory Studies organizes a proficiency test for the analysis of Liquefied Propane (composition only) every year. It was decided to continue this interlaboratory study during the annual program 2016/2017.

Because iis has limited gas-handling facilities in place to prepare gas samples, a cooperation with EffecTech (Uttoxeter, United Kingdom) was set up. This company is fully equipped and has experience in the preparation of gas mixtures for PT purposes. EffecTech maintains an ISO/IEC 17043 accreditation for the preparation of PT samples in homogeneous and stable batches and an ISO/IEC 17025 accreditation for the calibration and assignment of reference values for these samples.

In the 2016 proficiency test 48 laboratories in 29 different countries did register for participation. See appendix 2 for the number of participants per country. In this report the results of the 2016 proficiency test on Liquefied Propane are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT).

To optimise the costs for the participants, it was decided to prepare one Liquefied Propane mixture. The mixture was divided over a batch of 56 cylinders. The cylinder size is a cost-effective one-litre cylinder with dip tube device. Each cylinder, filled with approx 200 grams of liquefied propane mixture, was uniquely numbered. The limited cylinder size is chosen to optimise sample stability, cylinder costs, transport and handling costs. The preparation and testing of the sample cylinders was subcontracted to an ISO/IEX17025 accredited laboratory. Participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC 17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on a regular basis by sending out questionnaires. EffecTech is an accredited provider of proficiency testing schemes under the requirements of ISO/IEC17043:2010 by UKAS (no. 4719).

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). This protocol is electronically available through the iis web site www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

In this proficiency test only one sample was used. One batch of 56 one litre cylinders with artificial Liquefied Propane mixture was prepared and tested for homogeneity by EffecTech (Uttoxeter, United Kingdom) in conformance with ISO Guide 35: 2006 and ISO/IEC17043:2010 (job 16/0854) starting September 1, 2016. Each cylinder was uniquely numbered. Every cylinder in the batch was analysed using 5 replicate measurements. The within bottle and between bottle variations were then assessed in accordance with ISO Guide 35:2006 (Annex A.1). This procedure showed that the between bottle variations were all small compared to the uncertainties on the reference values on each component. Hence, a single reference value could be safely assigned to the entire batch of samples.

The repeatability values (r) were calculated per component by multiplication of the respective standard deviation by 2.8. Subsequently, the calculated repeatabilities were compared with 0.3 times the reproducibility of the reference method in agreement with the procedure of ISO 13528, Annex B2 in the next table:

Component	r(observed) in %mol/mol	0.3 X R(D2163:14e1) in %mol/mol
Ethane	0.004	0.053
Propane	0.068	1.244
Propylene	0.007	0.061
Iso-Butane	0.027	0.072
n-Butane	0.024	0.065
1-Butene	0.002	0.020
iso-Butylene	0.002	0.020
n-Pentane	0.006	0.023

Table 1: homogeneity test results of samples #16225

Each calculated repeatability is equal or less than 0.3 times the corresponding reproducibility of the reference method ASTM D2163:14e1. Therefore, homogeneity of the subsamples #16225 was assumed.

To each of the participating laboratories one 1L cylinder was sent on October 5, 2016.

2.5 STABILITY OF THE SAMPLES

EffecTech (Uttoxeter, United Kingdom) declares that the prepared gas cylinders have a shelf life of at least 6 months. This is sufficient for the proficiency testing purposes.

2.6 ANALYSES

The participants were asked to determine the composition of the gas mixture of sample #16225: Ethane, Propane, Propene, n-Butane, iso-Butane, 1-Butene, iso-Butene, n-Pentane and to calculate several physical parameters from the composition: Molar Mass, Relative Density at 60F, Absolute and Relative Vapour pressure at 100F, Absolute and Relative Vapour pressure at 40°C and MON.

To get comparable test results a detailed report form, on which the units were prescribed as well as the required reference test method and a letter of instructions were prepared and made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The laboratories were also requested to confirm the sample receipt on the same data entry portal. A SDS was added to the samples.

3 RESULTS

During five weeks after sample dispatch the results of the individual laboratories were gathered via the data entry portal www.kmpd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalysis). Additional or corrected test results are used for data analysis and original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' (iis-protocol, April 2014 version 3.3). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test, and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

According to ISO 5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation, no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. In order to be able to have an objective evaluation of the performance of each participant, it was decided to evaluate this performance against the literature requirements, e.g. ASTM reproducibilities. Therefore the z-scores were calculated using a target standard deviation. This target standard deviation was calculated from the literature reproducibility (R) by division with 2.8.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated in accordance with:

 $z_{(target)}$ = (test result - average of PT) / target standard deviation

The $z_{(target)}$ scores are listed in the result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore the usual interpretation of z-scores maybe as follows:

|z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory

4 EVALUATION

In this proficiency test several problems were encountered with sample transport. Due to these problems three cylinders did reach the laboratory near or after the final reporting date. Therefore these three laboratories were unable to test the cylinder and to report results before the deadline of reporting. Another two laboratories did not report any test results due to several other reasons. Not all laboratories did report all test results requested.

In total 43 participating laboratories reported 472 numerical test results. Observed were 34 outlying test results, which is 7.2% of all numerical results. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST/COMPONENT

In this section the results are discussed per component and per test. The test methods, which were used by the various laboratories, are taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in appendix 3.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care.

Most test results reported by laboratories 347, 1026, 1776 and 6018 were deviating and many of the eight test results appeared to be statistical outliers. As the calculated physical test results are dependent on the composition, it was decided to reject all of the calculated test results of these four laboratories from the statistical evaluations.

<u>Ethane</u> :	The determination of this component was not problematic. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers, is in good agreement with the requirements of ASTM D2163:14e1 and also with the reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).
<u>Propane:</u>	The determination of this component was not problematic. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D2163:14e1 and also with the reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).
<u>Propene:</u>	The determination of this component was not problematic. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D2163:14e1 and also with the reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).
<u>iso-Butane:</u>	The determination of this component may be problematic, depending on the test method used by the laboratory. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D2163:14e1. However, the calculated reproducibility is in good agreement with the less strict reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).
<u>n-Butane:</u>	The determination of this component may be problematic, depending on the test method used by the laboratory. Four statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D2163:14e1. However, the calculated reproducibility is in good agreement with the less strict reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).

<u>1-Butene:</u> The determination of this component was not problematic. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D2163:14e1 and also with the reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).

- <u>Iso-Butene:</u> The determination of this component was not problematic. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D2163:14e1 and also with the reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).
- <u>n-Pentane:</u> The determination of this component may be problematic, depending on the test method used by the laboratory. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D2163:14e1. However, the calculated reproducibility is in good agreement with the less strict reproducibility requirements of EN27941:93 (identical to IP405 and ISO7941).
- <u>Molar Mass:</u> This calculated parameter may not be problematic. The results vary over a range from 44.64 – 45.988 g/mol. No statistical outliers were present, but four test results were excluded. The calculated reproducibility after rejection of the four suspect test results is in agreement with the observed reproducibility in the previous PT iis15S03P (0.135 vs. 0.122).
- Rel. Density at 60F: This calculated parameter may be problematic. The results vary over a range from 0.5097 1.585. No statistical outliers were present, but two test results may contain a calculation error. The calculated reproducibility after rejection of the suspect test results is large in comparison with the calculated reproducibility of iis15S03P (0.00229 vs. 0.00070).
- <u>Abs. VP at 100F:</u> As the reported results calculated via ASTM D2598 and ISO8973 are not identical, it was decided to calculate the absolute vapour pressure for each laboratory according to both test methods by using all reported components concentrations. When the result of the calculation method of ASTM D2598 is compared with the result of the calculation method of ISO8973, it is noticed that the difference in the means is significant,

while the difference in the reproducibilities is not significant. See also the discussion in 5. The calculated reproducibilities after rejection of the four suspect test results are larger than the reproducibilities observed in the previous PT iis15S03P (0.962 vs 0.749 for ISO8973 and 1.007 vs 0.798 for D2598).

- Rel. VP at 100F: As the reported results calculated via ASTM D2598 and ISO8973 are not identical, it was decided to calculate the relative vapour pressure for each laboratory according to both test methods by using all reported components concentrations. When the result of the calculation method of ASTM D2598 is compared with the result of the calculation method of ISO8973, it is noticed that the difference in the means is significant, while the difference in the precisions is not significant. See also the discussion in 4.3. The calculated reproducibilities after rejection of the four suspect test results are larger than the reproducibilities observed in the previous PT iis15S03P (0.962 vs 0.749 for ISO8973 and 1.007 vs 0.798 for D2598).
- <u>Abs. VP at 40°C:</u> This determination may be problematic for a number of laboratories. The range of the reported test results is large: from 1241 1324 kPa. Two calculation errors were observed. After rejection of the suspect data one statistical outlier was observed. The quality of the test results did not improve since the previous PT iis15S03P as the reproducibility of the results is comparable (5.83 vs 4.67).
- Rel. VP at 40°C:This determination may be problematic for a number of laboratories.
The range of the reported test results is large: from 1140 1223 kPa.
Two calculation errors were observed. After rejection of the suspect data
one statistical outlier was observed. The quality of the test results did not
improve since the previous PT iis15S03P as the dispersion of the results
is comparable (6.64 vs 4.66).
- MON: As the reported results calculated via ASTM D2598 and EN589 are not identical, it was decided to calculate MON for each laboratory according to both test methods by using all reported components concentrations. When the result of the calculation method of ASTM D2598 is compared with the result of the calculation method of EN589, it is noticed that the difference in the means is significant and the difference in the precisions is also significant. See also the discussion in 4.3.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The average results per sample, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM D2163:14e1 and EN27941/ISO7941/IP405) are compared in the next table.

Parameter	unit	n	cons. value	2.8 * sd	R(D2163:14 ^e 1) in %mol	R(EN27941) liqinj. in %mol
Ethane	%mol/mol	38	0.364	0.076	0.167	0.300
Propane	%mol/mol	38	92.52	0.79	4.14	1.02
Propene	%mol/mol	36	0.588	0.072	0.201	0.214
iso-Butane	%mol/mol	38	2.65	0.29	0.24	0.39
n-Butane	%mol/mol	38	2.84	0.41	0.22	0.39
1-Butene	%mol/mol	36	0.203	0.029	0.067	0.160
Iso-Butene	%mol/mol	37	0.198	0.040	0.066	0.160
n-Pentane	%mol/mol	38	0.628	0.104	0.077	0.312
Molar Mass	g/mol	18	45.04	0.14	n.a.	n.a.
Rel. Density at 60F		22	0.5120	0.0023	n.a.	n.a.
Abs. VP at 100F-ISO, see §4.4	psi	16	184.4	1.0	n.a.	n.a.
Abs. VP at 100F-ASTM, see §4.4	psi	16	180.4	1.0	n.a.	n.a.
Rel. VP at 100F-ISO, see §4.4	psi	19	169.7	1.0	n.a.	n.a.
Rel. VP at 100F-ASTM, see §4.4	psi	19	165.7	1.0	n.a.	n.a.
Abs. VP at 40°C	kPa	14	1307.6	5.8	n.a.	n.a.
Rel. VP at 40°C	kPa	15	1206.2	6.6	n.a.	n.a.
MON – EN589, see §4.4		13	95.08	0.04	n.a.	n.a.
MON – D2598, see §4.4		13	96.47	0.07	n.a.	n.a.

Table 2: Performance of the group in comparison with the target reproducibilities

Without further statistical calculations it can be concluded that for a number of parameters there is a good compliance of the group of participating laboratories with the relevant standard. The problematic components/tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF OCTOBER 2016 WITH PREVIOUS PTS

	Oct. 2016	Oct. 2015	Oct. 2014	Oct. 2013	Oct. 2012
Number of reporting labs	43	41	44	35	27
Number of test results reported	472	468	395	367	267
Statistical outliers	34	24	27	26	19
Percentage outliers	7.2%	5.1%	6.8%	7.1%	7.1%

Table 3: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of ASTM D2163. For 2012 – 2013 against D2163:96 and for 2014 – 2016 against D2163:14e1. The conclusions are given the following table:

Component	Oct. 2016	Oct. 2015	Oct. 2014	Oct. 2013	Oct. 2012
Ethane	++	++	-		
Propane	++	++	+/-	+/-	+
Propene	++	+	+/-	-	+
iso-Butane	-	+	+/-	-	+/-
n-Butane	-	-	-		-
1-Butene	++	++			-
Iso-Butene	+	++			
n-Pentane	-	-			

Table 4: comparison determinations against the requirements of ASTM D2163

The following performance categories were used in the above table:

- ++: group performed much better than the reference test method
- + : group performed better than the reference test method
- +/-: group performance equals the reference test method
- : group performed worse than the reference test method
- -- : group performed much worse than the reference test method

5 DISCUSSION

Because several of the reproducibility requirements of ASTM D2163 differ significantly from the reproducibility requirements of EN27941 (for liquid injection), the outcome of the evaluation will be strongly dependent on the target test method selected for the evaluation.

The consensus values as determined in this PT are compared with the average values from the homogeneity testing by EffecTech, United Kingdom in the following table.

Parameter	Average values by EffecTech in %mol/mol	Consensus values from participants results in %mol/mol	Absolute differences in %mol/mol	calc. z-score
Ethane	0.402	0.364	-0.038	+0.63
Propane	92.678	92.519	-0.159	+0.11
Propene	0.597	0.588	-0.009	+0.13
iso-Butane	2.564	2.646	0.082	-0.94
n-Butane	2.761	2.843	0.082	-1.05
1-Butene	0.200	0.203	0.003	-0.13
Iso-Butene	0.198	0.198	0.000	+0.00
n-Pentane	0.599	0.628	0.029	-1.04

Table 5: comparison of consensus values with values determined by EffecTech

From this comparison it is clear that <u>all</u> consensus values as determined in this PT are in line with the values as determined by EffecTech during the preparation of the cylinders.

In principle no additional variation should be introduced when applying a calculation on the reported component concentrations. However, in practice a significant additional uncertainty is added in most cases. See the differences between the values from the test results as reported by the participating laboratories (each using its own calculation procedure) and the values as calculated by its using one calculation procedure for each set of laboratory test results.

For the calculation of the Molar Mass, Relative Density, Vapour Pressure and Motor Octane Number several standardized test methods are available, e.g. ASTM D2421 for the interconversion of the units to gas-volume, liquid-volume or mass basis. Also different test methods for the calculation of the Vapour Pressure do exist. In ISO 8973 (identical to IP432) the Vapour Pressure is calculated from the <u>mole fraction</u> per component and a Vapour Pressure factor of that component (given for all components). In ASTM D2598 the Vapour Pressure is calculated from the <u>liquid volume percentage</u> per component and a Vapour Pressure factor of that component (given for only several components). Also the selection of the tables to be used for the calculations may cause additional uncertainty. This has been at least observed for Vapour pressure at 100F and Motor Octane Number.

In ASTM D2598 the Gage pressure (identical to the <u>Relative</u> VP) is calculated from the <u>liquid</u> <u>volume percentage</u> per component and a VP factor of that component. Regretfully in the 2002 (2007) version of D2598 no factors are given for n-butene, 1-butene and n-pentane. However, in the 2012 version, factors are mentioned for these and other components. As one would expect to find identical values from both calculation methods, it is remarkable to see that the results from the ASTM D2598 calculation are significantly lower than the results from the ISO8973/IP432 calculation. The observed difference is caused by a difference in the VP factor of Ethane. ASTM (Subcommittee D02.H) commented (see also Appendix 3, literature: 20):

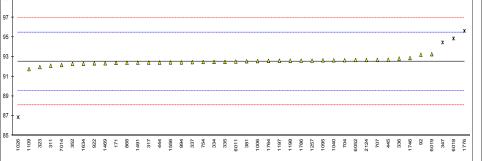
"The vapor pressure of ethane in D2598 was revised a few times prior to 2002. The current value, 611 psi, has remained the same for the last ten years. The revision of ethane was done because components in LPG blends do not necessarily behave as ideal gases. In particular, properties of ethane and ethylene appear to differ from ideality. Factors for these two components have been modified from 'ideal gas' values to make the calculated vapor pressure results more closely approximate actual measured vapor pressures of LPG blends. (i.e. D1267). Chapter 2 of Fuels and Lubricants Handbook (George Totten, © 2003), states that calculated vapor pressure were found to be biased high relative to experimental vapor pressure measured by D1267 for high ethane samples in earlier versions of D2598".

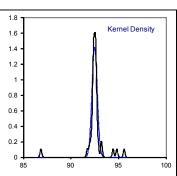
APPENDIX 1

Determination of Ethane on sample #16225; results in %mol/mol

lab	method	value	mark	z(targ)	remarks	
92	D2163	0.050	R(0.01)	-5.27		
150			. ,			
171	D2163	0.3760		0.20		
311	D2163	0.31		-0.91		
317	D2163	0.34		-0.41		
323 334	D2163 D2163	0.383 0.35		0.31 -0.24		
335	D2163	0.33		-0.24 -0.57		
336	D2163	0.34		-0.41		
337	D2163	0.37		0.10		
347	D2163	0.580	R(0.01)	3.62		
352	EN27941	0.3395		-0.42		
381	ISO7941	0.392		0.46		
444	D2163	0.368		0.06		
445 511	D2163	0.33		-0.57		
562						
704	D2163	0.352		-0.21		
707	D2163	0.370		0.10		
754	D2163	0.340		-0.41		
868	D2163	0.372		0.13		
912	D0400		0		first ways anti- d O 14	
922 994	D2163 D2163	0.35 0.3746	С	-0.24 0.17	first reported 0.41	
1006	D2163	0.3740		0.17		
1011	D2103					
1026	D2163	0.38		0.26		
1040	INH-001	0.355		-0.16		
1095	ISO7941	0.36		-0.07		
1109	IP405	0.48	R(0.01)	1.94		
1197	D2163	0.375		0.18		
1198 1200	D2163	0.373		0.15		
1200	D2163	0.4140		0.83		
1469	D2163	0.352788		-0.19		
1491		0.338		-0.44		
1556	EN27941	0.365		0.01		
1634	ISO7941	0.37		0.10		
1746	D2163	0.35		-0.24		
1764	D2163	0.3884	B(0.01)	0.40 8.14		
1776 1786	EN27941 D2163	0.85 0.374	R(0.01)	0.14		
2124	D2163	0.3880		0.40		
6011	D2163	0.4192		0.92		
6018	EN27941	0.290		-1.25		
6019	EN27941	0.402		0.63		
6052	D2163	0.36645		0.04		
7014	D2163	0.3893		0.42		
	normality	ОК				
	n	38				
	outliers	4				
	mean (n)	0.3643				
	st.dev. (n)	0.02720				
	R(calc.)	0.0762				o
	R(D2163:14e1)	0.1670			Compare R(EN27941:93(liq)) = 0.29	95
0.9 T						16 -
0.8 -					×	14 - Kernel Density
0.7 -						
0.6 -						12 -
0.5 -					X	10 -
						8-
0.4		<u></u>	<u> </u>	<u> </u>		6 -
0.3	<u> </u>					
0.2						4 -
0.1 - ×						

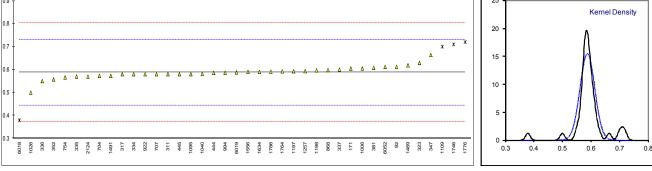
0.6

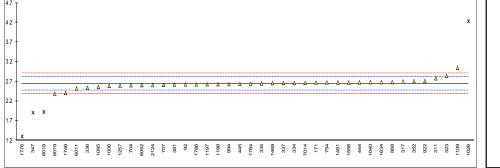

0.8

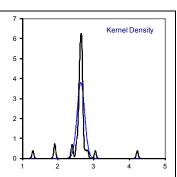

0

347

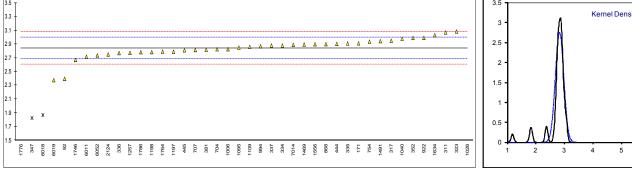
Determination of Propane on sample #16225; results in %mol/mol


lab	method	value	mark	z(targ)	remarks
92	D2163	93.217		0.47	
150	D0400				
171	D2163	92.3891		-0.09	
311 317	D2163 D2163	92.10 92.42		-0.28 -0.07	
323	D2163	91.964		-0.38	
334	D2163	92.49		-0.02	
335	D2163	92.49		-0.02	
336	D2163	92.83		0.21	
337	D2163	92.46		-0.04	
347	D2163	94.470	R(0.01)	1.32	
352 381	EN27941 ISO7941	92.2967 92.553		-0.15 0.02	
444	D2163	92.420		-0.07	
445	D2163	92.71		0.13	
511					
562					
704	D2163	92.656		0.09	
707	D2163	92.690		0.12	
754 868	D2163 D2163	92.474 92.404		-0.03 -0.08	
912	52100	92.404		-0.08	
922	D2163	92.34	С	-0.12	first reported 91.69
994	D2163	92.4366		-0.06	•
1006	D2163	92.570		0.03	
1011	D0400				
1026 1040	D2163 INH-001	86.85 92.652	R(0.01)	-3.83 0.09	
1040	ISO7941	92.052 92.65		0.09	
1109	IP405	91.75		-0.52	
1197	D2163	92.610		0.06	
1198	D2163	92.612		0.06	
1200	D0400				
1257 1469	D2163 D2163	92.6166 92.344059		0.07 -0.12	
1409	D2103	92.344039		-0.12	
1556	EN27941	92.435		-0.06	
1634	ISO7941	92.31		-0.14	
1746	D2163	92.88		0.24	
1764	D2163	92.594		0.05	
1776 1786	EN27941 D2163	95.64 92.616	R(0.01)	2.11 0.07	
2124	D2163	92.6828		0.07	
6011	D2163	92.5253		0.00	
6018	EN27941	94.867	R(0.01)	1.59	
6019	EN27941	93.270		0.51	
6052	D2163	92.681		0.11	
7014	D2163	92.1676		-0.24	
	normality	not OK			
	n	38			
	outliers	4			
	mean (n)	92.5189			
	st.dev. (n)	0.28153			
	R(calc.)	0.7883			Compare $P(FN)27041(02)(ig)) = 1.0210$
	R(D2163:14e1)	4.1427			Compare R(EN27941:93(liq)) = 1.0210
99 T					1.8 -
					1.6 Kernel Density
97					x 1.4 -
95					× ^{1,7}

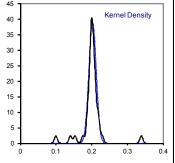

Determination of Propene on sample #16225; results in %mol/mol


lah	mothod	volue	mort	7(10	romoriko
lab	method	value	mark	z(targ)	remarks
92	D2163	0.612		0.34	
150	D0160				
171	D2163	0.6048		0.24	
311	D2163	0.58		-0.11	
317	D2163	0.58		-0.11	
323	D2163	0.629		0.58	
334	D2163	0.58		-0.11	
335	D2163	0.57		-0.25	
336	D2163	0.55		-0.53	
337	D2163	0.60		0.17	
347	D2163	0.664		1.06	
352	EN27941	0.5573		-0.43	
381	ISO7941	0.608		0.28	
444	D2163	0.586		-0.02	
445	D2163	0.58		-0.11	
511					
562	D0100				
704	D2163	0.573		-0.21	
707	D2163	0.580		-0.11	
754	D2163	0.566		-0.30	
868	D2163	0.598		0.14	
912			-		
922	D2163	0.58	С	-0.11	first reported 0.66
994	D2163	0.5867		-0.02	
1006	D2163	0.605		0.24	
1011					
1026	D2163	0.50		-1.22	
1040	INH-001	0.582		-0.08	
1095	ISO7941	0.58		-0.11	
1109	IP405	0.70	R(0.01)	1.57	
1197	D2163	0.593		0.07	
1198	D2163	0.597		0.13	
1200					
1257	D2163	0.5932		0.08	
1469	D2163	0.618669		0.43	
1491		0.573		-0.21	
1556	EN27941	0.590		0.03	
1634	ISO7941	0.59		0.03	
1746	D2163	0.71	R(0.01)	1.71	
1764	D2163	0.5925		0.07	
1776	EN27941	0.72	R(0.01)	1.84	
1786	D2163	0.591		0.04	
2124	D2163	0.5700		-0.25	
6011	EN07044				
6018	EN27941	0.379	R(0.01)	-2.91	
6019	EN27941	0.588		0.00	
6052	D2163	0.6119		0.34	
7014					
	normality	not OK			
	n	36			
	outliers	4			
	mean (n)	0.5878			
	st.dev. (n)	0.02571			
	R(calc.)	0.0720			0
	R(D2163:14e1)	0.2007			Compare R(EN27941:93(liq)) = 0.2140
^{0.9} T					25
					Kernel Density
0.8					20 -

Determination of iso-Butane on sample #16225; results in %mol/mol

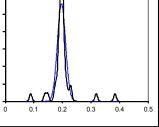

lab	method	value	mark	z(targ)	remarks			
92	D2163	2.623	mark	-0.26	Territariko			
150	BZ100							
171	D2163	2.6697		0.27				
311	D2163	2.78		1.54				
317	D2163	2.70		0.62				
323	D2163	2.839		2.22				
334	D2163	2.66		0.16				
335	D2163	2.65		0.05				
336	D2163	2.54		-1.22				
337	D2163	2.66		0.16				
347	D2163	1.905	R(0.01)	-8.52				
352	EN27941	2.7097		0.73				
381	ISO7941	2.619		-0.31				
444	D2163	2.677		0.36				
445	D2163	2.64		-0.07				
511								
562	D2162			0.50				
704 707	D2163 D2163	2.602 2.612		-0.50 -0.39				
707 754	D2163 D2163	2.612		-0.39				
868	D2163	2.681		0.30				
912	D2105	2.001						
922	D2163	2.71	С	0.74	first reported 2.94			
994	D2163	2.6312	0	-0.17				
1006	D2163	2.589		-0.65				
1011	52.00							
1026	D2163	4.23	R(0.01)	18.22				
1040	INH-001	2.680	,	0.39				
1095	ISO7941	2.56		-0.99				
1109	IP405	3.05		4.65				
1197	D2163	2.628		-0.21				
1198	D2163	2.630		-0.18				
1200								
1257	D2163	2.5918		-0.62				
1469	D2163	2.656037		0.12				
1491		2.672		0.30				
1556	EN27941	2.673		0.31				
1634	ISO7941	2.68		0.39				
1746 1764	D2163 D2163	2.41 2.6409		-2.71 -0.06				
1776	EN27941	1.30	R(0.01)	-15.48				
1786	D2163	2.626	1(0.01)	-0.23				
2124	D2163	2.6064		-0.45				
6011	D2163	2.517		-1.48				
6018	EN27941	1.922	R(0.01)	-8.32				
6019	EN27941	2.388		-2.96				
6052	D2163	2.60555		-0.46				
7014	D2163	2.6630		0.20				
	normality	not OK						
	n	38						
	outliers	4						
	mean (n)	2.6458						
	st.dev. (n)	0.10526						
	R(calc.)	0.2947						
	R(D2163:14e1)	0.2435			Compare R(EN27941:93(liq)) = 0.3873			
4.7 T						7 T		
4.2					x	6 -	1	Kernel Density

Determination of n-Butane on sample #16225; results in %mol/mol

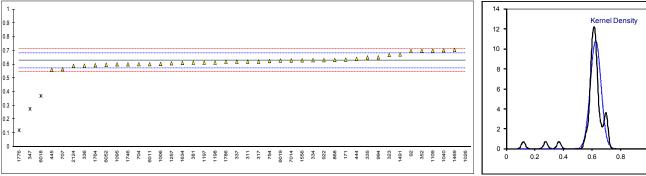

lab	method	value	mark	z(targ)	remarks
92	D2163	2.396	mark	-5.69	Temarka
150	D2105	2.330		-5.05	
171	D2163	2.9115		0.87	
311	D2163	3.07		2.88	
317	D2163	2.95		1.36	
323	D2163	3.084		3.06	
334	D2163	2.88		0.47	
335	D2163	2.91		0.85	
336	D2163	2.77		-0.93	
337	D2163	2.88		0.47	
347	D2163	1.825	R(0.01)	-12.95	
352	EN27941	2.9899	()	1.86	
381	ISO7941	2.816		-0.35	
444	D2163	2.904		0.77	
445	D2163	2.81		-0.42	
511					
562					
704	D2163	2.825		-0.23	
707	D2163	2.814		-0.37	
754	D2163	2.936		1.18	
868	D2163	2.899		0.71	
912					
922	D2163	2.99	С	1.87	first reported 3.20
994	D2163	2.8701		0.34	
1006	D2163	2.826		-0.22	
1011					
1026	D2163	5.58	R(0.01)	34.80	
1040	INH-001	2.979		1.73	
1095	ISO7941	2.85		0.09	
1109	IP405	2.86		0.21	
1197	D2163	2.791		-0.66	
1198	D2163	2.784		-0.75	
1200					
1257	D2163	2.7735		-0.89	
1469	D2163	2.893893		0.64	
1491		2.943		1.27	
1556	EN27941	2.898		0.70	
1634	ISO7941	3.03		2.37	
1746	D2163	2.67		-2.20	
1764	D2163	2.7903		-0.67	
1776	EN27941	1.20	R(0.01)	-20.89	
1786	D2163	2.783		-0.77	
2124	D2163	2.7504		-1.18	
6011 6018	D2163	2.7149	P(0.01)	-1.63 -12.41	
6018 6019	EN27941 EN27941	1.867 2.375	R(0.01)	-12.41 -5.95	
		0 = 0 0 /		4	
6052 7014	D2163 D2163	2.7361 2.8897		-1.36 0.59	
7014	D2103	2.0097		0.59	
	normality	not OK			
	n	38			
	outliers	4			
	mean (n)	2.8432			
	st.dev. (n)	0.14474			
	R(calc.)	0.4053			
	R(D2163:14e1)	0.2202			Compare R(EN27941:93(liq)) = 0.3873
3.5 T					3.5
3.3 -					Kernel Density

Determination of 1-Butene on sample #16225; results in %mol/mol

		and the		_//	
lab	method	value	mark	z(targ)	remarks
92	D2163	0.201		-0.09	
150	D0400				
171	D2163	0.2079		0.20	
311	D2163	0.22		0.71	
317	D2163	0.20		-0.13	
323	D2163	0.219		0.66	
334	D2163	0.21		0.29	
335	D2163	0.20		-0.13	
336	D2163	0.19		-0.54	
337	D2163 D2163	0.21	R(0.01)	0.29 -2.59	
347 352	EN27941	0.141 0.2084	R(0.01)	0.22	
381	ISO7941	0.2004		-0.59	
444	D2163	0.205		0.08	
445	D2163	0.19		-0.54	
511	D2100			-0.04	
562					
704	D2163	0.201		-0.09	
707	D2163	0.190		-0.54	
754	D2163	0.196		-0.29	
868	D2163	0.209		0.25	
912	BEIOO				
922	D2163	0.21	С	0.29	first reported 0.23
994	D2163	0.2194	C	0.68	
1006	D2163	0.201		-0.09	
1011					
1026	D2163	0.34	R(0.01)	5.71	
1040	INH-001	0.207		0.16	
1095	ISO7941	0.20		-0.13	
1109	IP405	0.23		1.12	
1197	D2163	0.196		-0.29	
1198	D2163	0.197		-0.25	
1200					
1257	D2163	0.2011		-0.08	
1469	D2163	0.216103		0.54	
1491		0.200		-0.13	
1556	EN27941	0.207		0.16	
1634	ISO7941	0.20		-0.13	
1746	D2163	0.20		-0.13	
1764	D2163	0.1998		-0.14	
1776	EN27941	0.1	R(0.01)	-4.30 -0.29	
1786 2124	D2163 D2163	0.196 0.2051		0.29	
6011	D2105			0.00	
6018	EN27941	0.154	R(0.01)	-2.05	
6019	EN27941	0.176	14(0.01)	-1.13	
6052	D2163	0.2025		-0.02	
7014	22.00				
	normality	suspect			
	n	36			
	outliers	4			
	mean (n)	0.2031			
	st.dev. (n)	0.01026			
	R(calc.)	0.0287			
	R(D2163:14e1)	0.0672			Compare R(EN27941:93(liq)) = 0.1605
0.4 T					45
0.35 -					40 - Kernel Density
0.00					× 35 -
0.3					30 -
I					J J JU ¶



Determination of iso-Butene on sample #16225; results in %mol/mol


lab	method	value	mark	z(targ)	remarks
92	D2163	0.204		0.25	
150					
171	D2163	0.2039		0.25	
311	D2163	0.22		0.92	
317	D2163	0.19		-0.34	
323	D2163	0.214		0.67	
334	D2163	0.20		0.08	
335 336	D2163 D2163	0.20 0.19		0.08 -0.34	
337	D2163	0.19		0.04	
347	D2163	0.20	R(0.05)	-2.45	
352	EN27941	0.1991	R(0.00)	0.04	
381	ISO7941	0.211		0.54	
444	D2163	0.199		0.04	
445	D2163	0.19		-0.34	
511	52100				
562					
704	D2163	0.193		-0.21	
707	D2163	0.180		-0.76	
754	D2163	0.192		-0.26	
868	D2163	0.205		0.29	
912					
922	D2163	0.19	С	-0.34	first reported 0.22
994	D2163	0.2308		1.38	
1006	D2163	0.199		0.04	
1011					
1026	D2163	0.32	R(0.01)	5.14	
1040	INH-001	0.199		0.04	
1095	ISO7941	0.20		0.08	
1109	IP405	0.23		1.35	
1197	D2163	0.191		-0.30	
1198 1200	D2163	0.191		-0.30	
1200	D2163	0.2026		0.19	
1469	D2163	0.2020		0.19	
1491	D2103	0.192		-0.26	
1556	EN27941	0.202		0.17	
1634	ISO7941	0.20		0.08	
1746	D2163	0.18		-0.76	
1764	D2163	0.2007		0.11	
1776	EN27941	0.09	R(0.01)	-4.56	
1786	D2163	0.191	,	-0.30	
2124	D2163	0.2072		0.38	
6011	D2163	0.3858	R(0.01)	7.92	
6018	EN27941	0.150		-2.03	
6019	EN27941	0.174		-1.02	
6052	D2163	0.19915		0.05	
7014					
	normality	not OK			
	n	37			
	outliers	4			
	mean (n) st dev. (n)	0.1981 0.01436			
	st.dev. (n) R(calc.)	0.01436			
	R(D2163:14e1)	0.0462			Compare R(EN27941:93(liq)) = 0.1605
		0.0007			
.45					40 Kernel Density
0.4 -					x 35 -

Determination of n-Pentane on sample #16225; results in %mol/mol

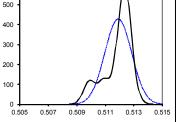
lab	method	value	mark	z(targ)	remarks
92	D2163	0.697		2.52	
150					
171	D2163	0.6336	0	0.22	First was acted 0.70
311	D2163	0.62	С	-0.27	first reported 0.72
317 323	D2163 D2163	0.62 0.668		-0.27 1.47	
323	D2163	0.68		0.09	
335	D2163	0.65		0.81	
336	D2163	0.59		-1.36	
337	D2163	0.62		-0.27	
347	D2163	0.276	R(0.01)	-12.75	
352	EN27941	0.6995		2.61	
381	ISO7941	0.612		-0.56	
444	D2163	0.639		0.41	
445	D2163	0.56		-2.45	
511					
562 704	D2163	 0.601		-0.96	
704	D2163	0.564		-0.90	
754	D2163	0.624		-0.13	
868	D2163	0.632		0.16	
912					
922	D2163	0.63	С	0.09	first reported 0.65
994	D2163	0.6507		0.84	
1006	D2163	0.603		-0.89	
1011	D0160	 1 70		41.00	
1026 1040	D2163 INH-001	1.78 0.702	R(0.01)	41.80 2.70	
1040	ISO7941	0.60		-1.00	
1109	IP405	0.70		2.63	
1197	D2163	0.612		-0.56	
1198	D2163	0.612		-0.56	
1200					
1257	D2163	0.6072		-0.74	
1469	D2163	0.705214		2.82	
1491	EN07044	0.672		1.61	
1556	EN27941	0.629		0.05	
1634 1746	ISO7941 D2163	0.61 0.60		-0.64 -1.00	
1764	D2163	0.5937		-1.23	
1776	EN27941	0.12	R(0.01)	-18.41	
1786	D2163	0.619		-0.31	
2124	D2163	0.5884		-1.42	
6011	D2163	0.6010		-0.96	
6018	EN27941	0.370	R(0.01)	-9.34	
6019	EN27941	0.627		-0.02	
6052	D2163	0.5973		-1.10	
7014	D2163	0.6280		0.02	
	normality	OK			
	n	38			
	outliers	4			
	mean (n)	0.6276			
	st.dev. (n)	0.03695			
	R(calc.)	0.1035			
	R(D2163:14e1)	0.0772			Compare R(EN27941:93(liq)) = 0.3120
1 T					14
4					Kernel Density

lab method

Determination of Molar Mass on sample #16225; results in g/mol

mark

z(targ)


remarks

value

lab	method	value	mark	z(targ)	remarks
92	D2163	45.00			
150					
171					
	1111 107				
311	INH-407	45.1			
317	INH-001	45.1			
323	Calc.	45.1			
334					
225					
335					
336					
337					
347	D2598	44.64	ex		excluded, see §4.1
352					
381	ISO8973	45.01			
	1300973				
444					
445	D2163	45.006			
511					
562					
704	D2421	45.0117			
707	D2421	44.9928			
754	D2421	45.046			
868	D2598	45.04			
912					
922					
004	D2162				
994	D2163	45.0395			
1006					
1011					
1026		45.988	ex		excluded, see §4.1
1040					
1095	1000070				
1109	ISO8973	45.10			
1197					
1198					
1200					
1257	D0500				
1469	D2598	45.05891			
1491	ISO8973	45.06			
1556	Calc.	45.04			
1634					
1746	D3588	45.127	ex, E		excluded, iis calculated 44.959
			ех, ш		excluded, ils calculated 44.939
1764	D2598	45.007			
1776					
1786					
2124					
6011					
	1000070				
6018	ISO8973	44.72	ex		excluded, see §4.1
6019	ISO8973	44.91			
6052	D3588	45.031			
7014					
	normality	auanaat			
	normality	suspect			
	n	18			
	outliers	0 + 4 ex			
	mean (n)	45.036			
	st.dev. (n)	0.0483			
	R(calc.)	0.135			
0					
Comp.	R(iis15S03P)	0.122			
					7
45.9 -					x 7
40.0					6 Kernel Density
45.7 -					
					5 -
45.5 -					
					4 -
45.3 -					
45.1 -					
^{40.1}	Δ Δ		Δ Δ	<u>۵ ۵ ۵ ۵</u>	
44.9 -	Δ Δ		-		2 -
44.7 -	ж				
×					
44.5	92 07 19	445 1764 381	2 2 2	868 868	
347	6018 6019 707 92	445 1764 381	704	954 868 1556	M M
	• •		-		

Determination of Relative Density at 60/60F on sample #16225; unitless results

lah	method	value	mark	z(tara)	romarke
lab 92	method D2598	value 0.512	mark	z(targ)	remarks
150	52000	0.512			
171	D2598	0.5126			
311	INH-407	0.5131			
317	INH-001	0.5123			
323	D2598	0.510			
334 335					
336					
337					
347	D2598	0.5097	ex		excluded, see §4.1
352	ISO8973	0.511			
381 444	D2598	0.510 			
444 445		0.5124			
511					
562					
704	D2598	0.5124			
707	D2598	0.5122			
754 868	ISO8973 D2598	0.51258 0.5125			
912	62000	0.5125			
922	D2598	0.51255	С		first reported 0.5129
994	D2598	0.51246			
1006	D2598	0.5119			
1011					oveluded see \$4.1 first reported 520.9 iis colculated 0.5179
1026 1040		0.5298	ex, C, E		excluded, see §4.1, first reported 529.8, iis calculated 0.5178
1040	ISO8973	1.585	ex, E		excluded, iis calculated 0.5123
1109	ISO8973	0.5120	- , -		,
1197					
1198					
1200					
1257 1469	D2598	 0.5125902			
1491					
1556	ISO8973	0.5126			
1634	DOFOC		0		first new sets of 540
1746	D2598	0.511	С		first reported 512
1764 1776	D2598	0.5122			
1786					
2124					
6011					
6018	ISO8973	0.5108	ex		excluded, see §4.1
6019 6052	ISO8973	0.5119			
7014	D2598	0.5124			
, , , ,	normality	suspect		-	
	n	22			
	outliers mean (n)	0 + 4 ex 0.51203			
	st.dev. (n)	0.000817			
	R(calc.)	0.00229			
Comp.	R(iis15S03P)	0.00070			
0.515 T					700
					600 - Kernel Density
0.513 -				Δ Δ Δ	
		Δ Δ Δ Δ	<u> </u>	_ 4	500
0.511 -	× ^ ^				400 -
× 0.509 -	Δ Δ				300 -
					200 -

0.507

0.505

Determination of Absolute Vapour Pressure at 100F on sample #16225; results in psi

lab	method		value			marl	K	z(ta	rg)	rema	arks								
92																			
150	Docoo			~				-											
171 311	D2598 ISO8973		180.9 183.6					-											
317	ISO8973		184.3					-											
323	1000070							-											
334								-											
335								-											
336	ISO8973		184.8					-											
337	D2598		195.0			0 Y		-		ovolu	uded,		611						
347 352	D2596		185.0 			ex				excit	uueu,	see	94.1						
381	D2598		184																
444								-											
445								-											
511								-											
562 704	ISO8973		 184.7					-											
704	ISO8973		185.5					_											
754	ISO8973		184.3	6				-											
868	D2598		180.3					-											
912	Docos					~		-		c .			- -						
922	D2598		180.1	1		С				tirst	repor	ted 1	79.6						
994 1006	D2598 D2598		184.1 180.8																
1011	02000							-											
1026			169.9	9		ex		-		excl	uded,	see	§4.1						
1040								-					-						
1095								-											
1109	ISO8973		184.6					-											
1197 1198								_											
1200																			
1257								-											
1469	D2598		180.1	394				-											
1491								-											
1556 1634								-											
1746								_											
1764	D2598		180.7	36				-											
1776								-											
1786								-											
2124								-											
6011 6018	ISO8973		 186.9	5		ex		-		evcli	uded,	200	84 1						
6019	ISO8973		185.8			CX.				CACI	ucu,	300	34.1						
6052								-											
7014								-		. .									
														m all	repo	rted c	omposition resul ASTM D2598	ts	
	normality									0K	3973	IP4	<u>32</u>				OK		
	n									34							37		
	outliers									2 + 4	l ex						1 + 4 ex		
	mean (n)									184.							180.418		
	st.dev. (n)									0.34							0.3597		
Comp	R(calc.) R(iis15S03	D۱								0.96 0.74							1.007 0.798		
Comp.	R(11515505)	-)								0.74	9						0.790		
190																~	0.2		Kernel Density
185 -						۵	۵	Δ	۵	۵	۵	۵	ж	۵	۵	×	0.18 - 0.16 -		Shieldenbig
			۵	Δ	A		-	-											
180 -	Δ Δ Δ	۵	Δ	-													0.14 - 0.12 -		Λ
175 -																	0.1		/ //
																	0.08 -	P	/ \\
170 - X																	0.06 -		
165 -																	0.04 -		
100																	0.02		
160	N 0 0	4	ø	5	-	-	4	~	4	ō	4	9	<u>۲</u>	2	o			J.	
1026	922 1469 868	1764	1006	171	311	381	994	317	754	1109	704	336	347	707	6019	6018	160 170	180	190 200
L																	L		

Determination of Relative Vapour Pressure at 100F on sample #16225; results in psi

92 D2598 165.6	lab	method	value	mark	z(targ)	remarks
150						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150					
	171					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \frac{334}{335} - \frac{1}{170} - \frac$		ISU8973 D2508				
$ \frac{335}{336} = \frac{1}{100} = \frac$		D2390				
$ \frac{336}{377} \qquad \qquad \\ \frac{337}{347} \qquad D2598 \qquad 170.3 \qquad ex \qquad \\ \frac{338}{327} \qquad D2598 \qquad 169 \qquad \\ \frac{344}{445} \qquad \\ \frac{345}{52} \qquad \\ \frac{346}{52} \qquad \\ \frac{347}{54} \qquad 170 \qquad \\ \frac{346}{52} \qquad \\ \frac{347}{54} \qquad 150.8973 \qquad 170.8 \qquad \\ \frac{348}{52} \qquad 2598 \qquad 165.6 \qquad \\ \frac{342}{52} \qquad$						
$ \frac{337}{32} 22598 \frac{170.3}{170.3} ex excluded, see §4.1 $ $ \frac{444}{53} \frac{170.3}{170.3} ex excluded, see §4.1 $ $ \frac{445}{511} \frac{170.3}{170.3} ex excluded, see §4.1 $ $ \frac{445}{511} \frac{170.3}{170.3} 170$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337					
331 D2598 169		D2598		ex		excluded, see §4.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D0500				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D2598				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
707 ISO8973 170.8 754 ISO8973 169.7 912 912 D2598 165.6 914 D2598 169.43 1066 D2598 169.43 1076 1076	562					
754 ISO8973 169.7						
868 D2598 165.6						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
922 D2598 165.4 C first reported 164.9 994 D2598 166.1 first reported 164.9 1006 D2598 166.1 excluded, see §4.1 1011 excluded, see §4.1 1040 1095 ISO8973 169.9 1197 1198 1200 1200 1200 1200 1200 1369 D2598 165.4394 1469 D2598 166.4394 1469 D2598 166.040 1776 D2598 166.040 1776 D2598 166.040 1776 6011 ISO8973 172.45 ex 6012 7014 D2598 165.86 7014 D2598 165.86 rormality n outliers normality 0052 7014 D2598 165.86 7014 D2598 165.86 7014 D2598 165.86 7014 D2598 165.86		D2090				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D2598		С		first reported 164.9
1006 D2598 166.1				5		
1026 166.15 ex excluded, see §4.1	1006					
$1040 \qquad \qquad \qquad \\ 1095 \qquad \qquad \\ 1097 \qquad \qquad \\ 1097 \qquad \qquad \\ 1197 \qquad \qquad \\ 1197 \qquad \qquad \\ 1198 \qquad \qquad \\ 1267 \qquad \qquad \\ 1267 \qquad \qquad \\ 1267 \qquad \qquad \\ 1349 \qquad \qquad \\ 1340 \qquad \\ 1340 \qquad \qquad \\ 1340 \qquad \qquad \\ 1340 \qquad $						
109 SO8973 169.9				ex		excluded, see §4.1
1199 SO8973 169.9						
$1197 \qquad \qquad \qquad \\ 1198 \qquad \qquad \\ 120 \qquad \qquad \\ 1227 \qquad \qquad \\ 1267 \qquad \qquad \\ 126 \qquad \qquad \\ 1469 \qquad D2598 \qquad 165.4394 \qquad \\ 1566 \qquad \qquad \\ 1776 \qquad \qquad \\ 1770 \qquad$		1909073				
$1198 \qquad \qquad \qquad \\ 1200 \qquad \qquad \\ 1257 \qquad \qquad \\ 1257 \qquad \qquad \\ 1257 \qquad \qquad \\ 1491 \qquad \qquad \\ 1534 \qquad \qquad \\ 1534 \qquad \qquad \\ 1534 \qquad \qquad \\ 154 \qquad D2598 \qquad 166 \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 1786 \qquad \qquad \\ 1786 \qquad \qquad \\ 1798 \qquad \qquad \\ 1011 \qquad \qquad \\ 1717 \qquad \\ 1011 \qquad \\ 1011 \qquad \qquad \\ 1011 \qquad \qquad \\ 1011 \qquad$		1300973				
$1200 \qquad \qquad \qquad \\ 1257 \qquad \qquad \\ 1469 \qquad D2598 \qquad 165 4394 \qquad \\ 1556 \qquad \qquad \\ 1554 \qquad \qquad \\ 1564 \qquad \qquad \\ 1776 \qquad D2598 \qquad 166 \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 1786 \qquad \qquad \\ 1793 \qquad \qquad \\ 199 \qquad 1508973 172.45 ex \qquad \\ 1014 D2598 \qquad 165.86 \qquad \\ 1014 D2598 \qquad 165.86 \qquad \\ 1015 IS08973 171.1 \qquad \\ 1014 D2598 \qquad 165.86 \qquad \\ 1014 D2598 \qquad 165.723 \qquad 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 D2598 \qquad 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 D2598 \qquad 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 D2598 \qquad 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 D2598 \qquad 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 D2598 \qquad 0.798 \qquad 0.798 \\ 1014 \qquad \\ 1014 D2598 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 \qquad \\ 1014 \qquad \\ 1014 D2598 0.3597 \qquad 0.749 \qquad 0.798 \\ 1014 \qquad \\ 1014 \qquad$						
$1257 \qquad \qquad \qquad \\ 1469 D2598 165.4394 \qquad \\ 1491 \qquad \qquad \\ 1556 \qquad \qquad \\ 1634 \qquad \qquad \\ 1634 \qquad \qquad \\ 1746 D2598 166 \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 2124 \qquad \qquad \\ 2124 \qquad \qquad \\ 2124 \qquad \qquad \\ 011 \qquad \qquad \\ 011 \qquad SO8973 172.45 \qquad ex \qquad \\ 011 \qquad \qquad \\ 011 \qquad SO8973 172.45 \qquad ex \qquad \\ 011 \qquad \qquad \\ 011$						
$1491 \qquad \qquad \qquad \\ 1556 \qquad \qquad \\ 1634 \qquad \qquad \\ 1764 \qquad D2598 \qquad 166 \qquad \\ 1776 \qquad \qquad \\ 1786 \qquad \qquad \\ 2124 \qquad \qquad \\ 2124 \qquad \qquad \\ 6011 \qquad \qquad \\ 6018 \qquad ISO8973 \qquad 172.45 \qquad ex \qquad \\ 6052 \qquad \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ \hline \begin{array}{c} Calculated by iis from all reported composition results \\ ISO8973 / IP432 \qquad OK \qquad OK \\ OK \qquad OK \qquad OK \\ OK \qquad OK \\ 0.3436 \qquad 0.3597 \\ 0.3436 \qquad 0.3597 \\ 0.3436 \qquad 0.3597 \\ 0.3697 \\ 0.962 \qquad 1.007 \\ Comp. R(iis15S03P) \qquad 0.749 \qquad 0.798 \\ \end{array}$	1257					
$1566 \qquad \qquad \qquad \\ 1634 \qquad \qquad \\ 1746 \qquad D2598 \qquad 166 \qquad \\ 1766 \qquad \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 1786 \qquad \qquad \\ 1786 \qquad \qquad \\ 6011 \qquad \qquad \\ 6013 \qquad ISO8973 \qquad 172.45 \qquad ex \qquad \\ excluded, see §4.1 \\ 6019 \qquad ISO8973 \qquad 171.1 \qquad \\ 6052 \qquad \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ \hline \begin{array}{c} Calculated by iis from all reported composition results \\ ISO8973 / IP432 \qquad ASTM D2598 \\ 0K \qquad OK \qquad OK \\ 0K \qquad OK \\ 0K \qquad OK \\ 0K \qquad OK \\ 0K \\ 0K \qquad 0K \\ 0K \\ 0.3436 \qquad 0.3597 \\ 0.3436 \qquad 0.3597 \\ 0.3436 \qquad 0.3597 \\ 0.3436 \qquad 0.3597 \\ 0.749 \qquad 0.798 \\ \end{array}$		D2598	165.4394			
$1634 \qquad \qquad \\ 1764 \qquad D2598 \qquad 166 \qquad \\ 1776 \qquad \qquad \\ 1776 \qquad \qquad \\ 1786 \qquad \qquad \\ 2124 \qquad \qquad \\ 6011 \qquad \qquad \\ 6011 \qquad \qquad \\ 6013 \qquad ISO8973 \qquad 172.45 \qquad ex \qquad \\ excluded, see §4.1 \\ 6019 \qquad ISO8973 \qquad 172.45 \qquad ex \qquad \\ 6052 \qquad \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ 7014 \qquad D2598 \qquad 165.86 \qquad \\ \hline Calculated by its from all reported composition results \\ ISO8973 / IP432 \qquad OK \qquad OK \\ 0K \qquad OK \qquad OK \\ n \qquad 34 \qquad 37 \\ outliers \qquad 2 + 4 ex \qquad 1 + 4 ex \\ mean (n) \qquad 5t.dev. (n) \qquad D.3436 \qquad D.3597 \\ R(calc.) \qquad D.962 \qquad 1.007 \\ Comp. R(iis15S03P) \qquad 0.749 \qquad 0.798 \\ \hline \\ 7^{74} \qquad \\ 4 \qquad 4 \qquad$						
$ \begin{array}{ccccccccccccccccccccccccccccccccc$						
$ \begin{array}{ccccccccccccccccccccccccccccccccc$		D2598				
$ \begin{array}{ccccccccccccccccccccccccccccccccc$						
		22000				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000070				such de la ses C4.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				ex		excluded, see §4.1
7014 D2598 165.86 normality n outliers 2+4 ex 1+4 ex 0K OK OK 0K	6052	1300973				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		D2598	165.86			
normality n ormality n outliers mean (n) st.dev. (n) R(calc.) Comp. R(iis15S03P) $7^{74} - \frac{1}{122} - \frac{12598}{0K}$ 2 + 4 ex 1 + 4 ex 169.673 0.3436 0.3436 0.3436 0.3697 0.749 0.749 0.749 0.798 1007						
normality OK OK n 34 37 outliers 2 + 4 ex 1 + 4 ex mean (n) 169.673 165.723 st.dev. (n) 0.3436 0.3597 R(calc.) 0.962 1.007 Comp. R(iis15S03P) 0.749 0.798						Calculated by iis from all reported composition results
n = 34 = 37 outliers 2 + 4 ex 1 + 4 ex 169.673 = 165.723 = 165.723 = 0.3436 = 0.3597 st.dev. (n) 0.3436 = 0.3597 = 0.962 = 0.749 = 0.798 = 0.798 = 0.749 = 0.798 = 0.798 = 0.749 = 0.798 = 0.749 = 0.798 = 0.798 = 0.749 = 0.798 = 0.749 = 0.798 = 0.749 = 0.798 = 0.749 = 0.798 = 0.749 = 0.798 = 0.749 = 0.798 = 0.749 =						<u>ISO8973 / IP432</u> <u>ASTM D2598</u>
outliers $2 + 4 ex$ $1 + 4 ex$ mean (n) 169.673 165.723 st.dev. (n) 0.3436 0.3597 R(calc.) 0.962 1.007 Comp. R(iis15S03P) 0.749 0.798		-				
$ \begin{array}{c} \begin{array}{c} mean (n) \\ st.dev. (n) \\ R(calc.) \\ comp. R(iis15S03P) \end{array} \begin{array}{c} 169.673 \\ 0.3436 \\ 0.962 \\ 0.749 \end{array} \begin{array}{c} 0.3597 \\ 1.007 \\ 0.798 \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $						
st.dev. (n) 0.3436 0.3597 R(calc.) 0.962 1.007 Comp. R(iis15S03P) 0.749 0.798						
$\begin{array}{c} R(calc.) \\ Comp. R(iis15S03P) \\ \hline \begin{array}{c} 174 \\ 172 \\ 170 \\ 168 \\ 166 \\ 164 \\ 162 \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} x \\ A \\$						
174		R(calc.)				
x 0.18 - 172 - 170 - 166 - 164 - 162 - x 0.18 - 0.16 - 0.14 - 0.12 - 0.1 - 0.08 - 0.08 - 0.06 - 0.04 -	Comp.	R(iis15S03P)				0.749 0.798
x 0.18 - 172 - 170 - 166 - 164 - 162 - x 0.18 - 0.16 - 0.14 - 0.12 - 0.1 - 0.08 - 0.08 - 0.06 - 0.04 -						
172	¹⁷⁴ T					0.2
170 Image: Constraint of the second	172 -					x 0.18 -
170- Image: Constraint of the second secon						Δ Δ 0.16 -
	170 -				Δ Δ Δ	
	168 -			Δ Δ		
	400					0.1 -
162 -	100 -	Δ Δ Δ		<u>a</u>		0.08 -
162 -	164 -					0.06 -
	162 -					0.04 -
	160 <u>8</u>	68 92 69 52 68 92 69	64 5 64 6 64 6	81 11 00	98 1 7 89	
	10	v, 4 g	17 12		⊎ ® K	
	ι					

Determination of Absolute Vapour Pressure at 40°C on sample #16225; results in kPa

lab	method	value	mark	z(targ)	remarks
92					
150					
171	10000-0				
311	ISO8973	1303			
317	ISO8973	1306			
323					
334	10.000-0				
335	ISO8973	1306			
336	ISO8973	1310			
337					
347	1000070				
352	ISO8973	1307			
381	ISO8973	1310.5			
444					
445 511					
562					
704	ISO8973	1308.9			
704	ISO8973	1315.2	E, ex		excluded; iis calculated 1310.4
754	ISO8973	1306.4	L, CX		
868	1000070				
912					
922					
994	ISO8973	1308.14			
1006					
1011					
1026		1241	ex		excluded, see §4.1
1040					
1095	ISO8973	1299	E, ex		excluded; iis calculated 1309
1109	ISO8973	1308.9			
1197					
1198					
1200					
1257					
1469	IP432	1306.3505			
1491					
1556	ISO8973	1307.73			
1634	ISO8973	1307.3			
1746	10000-0				
1764	ISO8973	1310.575			
1776					
1786 2124					
2124 6011					
6018	ISO8973	 1324	ex		excluded, see §4.1
6019	ISO8973	1317	G(0.01)		excluded, see 94.1
6052	1500375		0(0.01)		
7014					
	normality	OK			
	n	14			
	outliers	1 + 4 ex			
	mean (n)	1307.63			
	st.dev. (n)	2.083			
	R(calc.)	5.83			
Comp.	R(iis15S03P)	4.67			
1330 T					0.25
1325 -					Kernel Density
					x 0.2 -
1320 -					
1315 -					x 0.15 -
1310 -					
	Δ		<u> </u>	<u>A</u> A	
1305 -	Δ				0.1 -
1300 -	×				
1295 -					0.05 -
					$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
1290	1095 311 317 317	335 1469 754	1634	994 704	P R P R
1	e o v	÷	5 ¥		

Determination of Relative Vapour Pressure at 40°C on sample #16225; results in kPa

lab	method		valu	le		ma	rk	Z	(targ))	remai	rks											
92										-													
150										-													
171 311	ISO8973		120							-													
317	ISO8973		120							-													
323										-													
334										-													
335	ISO8973		120							-													
336 337	ISO8973		120							-													
347																							
352										-													
381	ISO8973		120	9.2						-													
444										-													
445			120							-													
511 562										-													
704	ISO8973		120							_													
707	ISO8973		121			Е, е	ex			- (exclud	ded; i	iis ca	lculat	ed 12	209.	1						
754	ISO8973		120	5.2																			
868										-													
912 922										-													
922 994	ISO8973		120	6.84																			
1006										-													
1011										-													
1026			114			ex				- (exclud	ded, s	see §	4.1									
1040 1095	ISO8973		 119			E, 6	~~				exclud	dod: i	iie ee		od 1'	202							
11095	ISO8973		120			⊏, •	. X			- (exclud	Jeu, I	lis ca	iculat	eu 1	200							
1197	1000070									-													
1198										-													
1200										-													
1257 1469	IP432		120	5.02	55					-													
1409	ISO8973		120		55																		
1556	ISO8973			6.40						-													
1634	ISO8973		120							-													
1746	10000-0				~					-													
1764	ISO8973			9.25	0					-													
1776 1786																							
2124										-													
6011																							
6018	ISO8973		122			ex				- (excluo	ded, s	see §	4.1									
6019 6052	ISO8973		121			G(t).05)																
7014																							
1014																							
	normality		not	OK																			
	n 		15																				
	outliers mean (n)			4 ex 6.15																			
	st.dev. (n)		2.37																				
	R(calc.)		6.64																				
Comp.	R(iis15S03P	')	4.66	3																			
1225 -																	ж	0.18				Kernjel Den	noity
1220 -																		0.16 -			r	terne Den	ISILY
1215 -																x		0.14 -				11	
															×			0.12 -				N	
1210 -										Δ	۵	۵	۵	۵				0.1 -				Λ	
1205 -	Δ	Δ	Δ	Δ	Δ	Δ	Δ	<u>A</u>	A									0.08 -					
1200 -																		0.06 -					
	×																	0.04 -				11	
1195 -																		0.02 -	-			dh.	
1190	1 35	21	ñ	ğ	Ż.	z	£	92	R	¥	Ø,	ő	ž	X	×	6	8		<u> </u>			<u>II (V</u>	
1026	1095 311 1491	317	335	1469	754	1634	445	1556	994	704	1109	336	381	1764	707	6019	6018	1120	1140	1160	1180	1200 122	20 1240

Determination of Motor Octane Number, MON on sample #16225;

lab	method		value	n	nark	z(targ)	remark	s						
92														
150 171	D2598Calc.		 96.1											
311 317	EN589		 95.1											
323	LINGOU													
334														
335 336	EN589		 95.0											
337														
347 352														
381	EN589		95.53											
444														
445 511														
562														
704	EN589		95.08											
707 754	EN589 EN589		95.09 95.1											
868	D2598Calc.		96.5											
912														
922 994	EN589		 95.07											
1006	LINGOS													
1011														
1026 1040														
1040														
1109	EN589		95.1											
1197 1198														
1200														
1257														
1469 1491	D2598		96.42280)										
1556														
1634														
1746	EN589		96.5 95.084											
1764 1776	EN589		95.064											
1786														
2124 6011														
6018														
6019														
6052 7014														
7014														
							Calcula	ated by	iis fror	m all rep	ported c	omposition	results	
	normality						EN589 suspec					<u>ASTM D</u> OK	2598	
	n						34					36		
	outliers						2 + 4 e					0 + 4 ex		
	mean (n) st.dev. (n)						95.078 0.0126					96.474 0.0247		
	R(calc.)						0.035					0.069		
	R(target)						n.a.					n.a.		
⁹⁸ T												0.9	Ker	nel Density
97.5 -												0.8 -	\wedge	, , , , ,
97 -												0.7 -	h	
96.5 -									۵	۵	۵	0.6 - 0.5 -	IA	
96 -								۵				0.4 -	$ // \langle \rangle \rangle$	
95.5							Δ					0.3 -	// \ \	
95 - ∆	Δ 4	7	Δ Δ	۵	۵	۵						0.2 -		\\
94.5 -												0.1 -	1	$\langle I \rangle$
94	994	ţ	707	754	317	1109	381	171	1469	868	1746	0	94 95 96	97 98
Ľ ř	i i i		¹	12	'n	11	ň	+	14	8	17.	93	94 95 96	ə/ 98

APPENDIX 2

Number of participants per country

<u>.</u>	
2 labs in	AUSTRALIA

- 1 lab in AZERBAIJAN 1 lab in BELGIUM
- 1 lab in CANADA
- 1 lab in CHILE
- 1 lab in CHINA, People's Republic
- 1 lab in EGYPT
- 4 labs in FRANCE
- 1 lab in GERMANY
- 1 lab in INDIA
- 1 lab in IRAN, Islamic Republic of
- 1 lab in ITALY
- 3 labs in MALAYSIA
- 3 labs in NETHERLANDS
- 1 lab in NIGER
- 1 lab in PAKISTAN
- 1 lab in PERU
- 7 labs in PORTUGAL
- 1 lab in RUSSIAN FEDERATION
- 1 lab in SAUDI ARABIA
- 1 lab in SERBIA
- 1 lab in SPAIN
- 2 labs in SWEDEN
- 1 lab in TAIWAN
- 1 lab in THAILAND
- 2 labs in UKRAINE
- 2 labs in UNITED ARAB EMIRATES
- 2 labs in UNITED KINGDOM
- 2 labs in UNITED STATES OF AMERICA

APPENDIX 3

Abbreviations:

С	= final result after checking of first reported suspect result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner outlier test
R(0.05)	= straggler in Rosner outlier test
E	= probably an error in calculations
W	= test result withdrawn on request of participant
ex	= test result excluded from calculations
n.a.	= not applicable
fr.	= first reported
SDS	= safety data sheet

Literature:

1	iis Interlaboratory Studies, Protocol for the Organization, Statistics and Evaluation, April 2014
2	ASTM D2163-96
3	ASTM D2163-07
4	ASTM D2421-07
5	ISO 5725-86
6	ISO 5725, parts 1-6, 1994
7	M. Thompson and R. Wood, J. AOAC Int, <u>76</u> , 926, (1993)
8	W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
9	IP 367/84
10	DIN 38402 T41/42
11	P.L. Davies, First reported Z. Anal. Chem, <u>331</u> , 513, (1988)
12	J.N. Miller, Analyst, <u>118</u> , 455, (1993)
13	Analytical Methods Committee Technical Brief, No4 January 2001
14	The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M.
	Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)
15	ISO 17043:2010
16	EN 27941:1993
17	ASTM D2598-02 (reapproved 2007)
18	IP 432-2000 = ISO8973-1997
19	Work Item WK36318, proposal to revise ASTM D2598-02 (07)
20	Private communication ASTM Subcommittee D02.H
21	Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics,
	25(2), pp. 165-172, (1983)