Results of Proficiency Test Transformer Oil (fresh) November 2015

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Author:ing. C.M. Nijssen-WesterCorrector:dr. R.G. Visser & ing. R.J. StarinkReport:iis15L08

February 2016

--- empty page ---

CONTENTS

1		4
2	SET UP	4
2.1	ACCREDITATION	4
2.2	PROTOCOL	4
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	5
2.5	STABILITY OF THE SAMPLES	5
2.6	ANALYSES	6
3	RESULTS	6
3.1	STATISTICS	6
3.2	GRAPHICS	7
3.3	Z-SCORES	7
4	EVALUATION	8
4.1	EVALUATION PER TEST	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10
4.3	COMPARISON OF THE NOVEMBER 2015 PROFICIENCY TEST WITH PREVIOUS PTS 1	11

Appendices:

1.	Data and statistical results	12
2.	Number of participants per country	30
3.	Abbreviations and literature	31

1 INTRODUCTION

Since 2001, the Institute for Interlaboratory Studies organized a proficiency test for the analysis of Transformer Oil (fresh) every year. It was decided to continue this interlaboratory study during the annual program 2015/2016. In this interlaboratory study, 52 laboratories from 28 different countries have participated. See appendix 2 for a list of number of participants per country order. In this report, the results of the 2015 interlaboratory study on Transformer Oil (fresh) are presented and discussed. This report is also electronically available through the iis internet site <u>www.iisnl.com</u>.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. Analyses for fit-for-use and homogeneity testing were subcontracted to an accredited laboratory. In this proficiency test, the participants received a bottle of 1 litre of Transformer Oil (fresh), labelled #15222. Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. This PT falls under the accredited scope. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). This protocol can be downloaded from the FAQ-page of the iis website www.iisnl.com.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary bulk material (DIALA S4 Electrical Insulation Oil) was obtained from a local supplier. The approximately 125 litre bulk material was homogenised in a pre-cleaned drum. After homogenisation, 60 subsamples were transferred to 1 litre amber glass bottles and labelled #15222. The homogeneity of the subsamples #15222 was checked by determination of Density in accordance with ASTM D4052 on 8 stratified randomly selected samples.

	Density at 20°C in kg/m ³
Sample #15222-1	804.81
Sample #15222-2	804.82
Sample #15222-3	804.82
Sample #15222-4	804.82
Sample #15222-5	804.83
Sample #15222-6	804.82
Sample #15222-7	804.81
Sample #15222-8	804.82

Table 1: homogeneity test results of subsamples #15222

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the reference methods in agreement with the procedure of ISO 13528, Annex B2 in the next table.

	Density at 20°C in kg/m ³
r (sample #15222)	0.02
reference method	ISO3675:98
0.3xR _(reference)	0.36

Table 2: repeatability of subsamples #15222

The calculated repeatability of sample #15222 was less than 0.3 times the corresponding reproducibility of the reference method. Therefore, homogeneity of the subsamples #15222 was assumed.

To each of the participating laboratories, 1*1 litre bottle (labelled #15222) was sent on November 4, 2015.

2.5 STABILITY OF THE SAMPLES

The stability of Transformer Oil, packed in the amber glass bottles, was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were asked to determine tests mentioned in either ASTM D3487 or IEC 60296 on sample #15222: Acid Number (Neutralization Number), Breakdown Voltage, Density at 20°C, Di-electric loss at 90°C (Di-electric Dissipation Factor and Specific Resistance), Flash Point, Interfacial Surface Tension, Kinematic Viscosity at 40°C and Water.

To get comparable results a detailed report form, on which the units were prescribed as well as the required standards and a letter of instructions were prepared and made available on the data entry portal www.kpmd.co.uk/sgs-iis/.

A SDS and a form to confirm receipt of the samples were added to the sample package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The original reported results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not yet reported. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the (raw data of the) reported results.

Additional or corrected results have been used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' (iis-protocol, April 2014 version 3.3). For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

In accordance to ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon, Grubbs and Rosner outlier tests. Outliers are marked

by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test and by R(0.01) for the Rosner General ESD test (see appendix 3, no.16). Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of the averages and the standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation, no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for each determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 3; nos.14 and 15). Also a normal Gauss curve was projected over the Kernel Density Graph.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the spread of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use. The z-scores were calculated in accordance with:

 $z_{(target)}$ = (result - average of PT) / target standard deviation

The $z_{(target)}$ scores are listed in the result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore the usual interpretation of z-scores maybe as follows:

|z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory

4 EVALUATION

In this proficiency test, no problems were encountered with the despatch of the samples. In total 7 participants reported the results after the final reporting date and 3 participants did not report at all. Not all participants were able to report results for all tests.

In total 49 participants reported 330 numerical results. Observed were 26 outlying results, which is 7.9% of the numerical results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section, the results are discussed per sample and per test. The specified test methods and requirements were taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the reported data. The abbreviations, used in these tables, are listed in appendix 3.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care.

- <u>Acid Number</u>: This determination may be problematic for a number of laboratories. Six laboratories reported possibly a false positive result. No significant conclusions were drawn as the Acid Number was below the quantification limit (0.014 g KOH/kg) of the test method EN62021-1:03.
- Breakdown Voltage:This determination was not problematic. No statistical outliers were
observed. The calculated reproducibility is in good agreement with
the requirements of EN60156:95. The reproducibility of EN60156:95
was determined from Figure 3. The black line in Figure 3 of
EN60156:95 shows the relative standard deviation (=SD/mean or
RSDr) as a function of the value of the mean based on six
breakdown measurements. To calculate the repeatability RSDr was

multiplied with a factor 2.8. The reproducibility can be estimated from the repeatability by multiplication with a factor 3, which is an empirical factor.

- <u>Density at 20°C</u>: This determination was problematic for a number of laboratories. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in full agreement with the requirements of ISO3675:98.
- <u>DD-Factor:</u> This determination was problematic for a number of laboratories. Four statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of EN60247:04.
- Spec. Resistance:This determination was very problematic. The reported test results
vary over a large range: 5.491 20880 GΩm. Four statistical outliers
were observed and one test result was excluded, for the test
temperature used was 20°C instead of 90°C. The calculated
reproducibility after the rejection of the suspect data is not at all in
agreement with the requirements of EN60247:04.

One participant remarked that it is well known that specific resistance of new oils can vary in a big range. This is due to randomly tiny amount of impurities (maybe present in the air or in the test cell) which can dramatically change the value. In used oils, however, due to already present ion flow of the polar compounds, these problems are not observed.

- <u>Flash Point</u>: This determination was not problematic. Three laboratories were excluded as the test results were reported according to ASTM D92 which is not equivalent to ISO2719/ASTM D93/IP34 method A. No statistical outliers were observed. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of ISO2719:02-A.
- Interf. Surf. Tension: This determination was problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D971:12. One should be aware that ISO6295 is obsolete since February 2005.

Kinematic Viscosity:	This determination was problematic. Five statistical outliers were
	observed. The calculated reproducibility, after rejection of the
	statistical outliers is not in agreement with the requirements of
	ISO3104:96.
Matan	This determination was problematic. One statistical suffice was

<u>Water</u>: This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of EN60814:98.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The average results per sample, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM, ISO, EN and IEC standards) are compared in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Acid Number (EN62021-1)	g KOH/kg	31	0.005	0.007	(0.002)
Breakdown Voltage	kV/2.5 mm	46	50.0	40.3	79.8
Density at 20°C	kg/m ³	33	804.88	1.00	1.20
Di-electric Dissipation Factor at 90°C		34	0.0002	0.0007	0.0014
Specific Resistance at 90°C	GΩm	22	2793	7613	2933
Flash Point	°C	27	192	15	14
Interfacial Surface Tension	mN/m	31	50.7	10.9	5.1
Kinematic Viscosity at 40°C	mm²/s	32	10.00	0.12	0.08
Water	mg/kg	45	18	8	6

Table 3: Performance of the group on sample #15222

() = Results between brackets were near or below detection limit, these results should be used with care

Without further statistical calculations, it can be concluded that for some tests there is a good compliance of the group of participating laboratories with the relevant standards. The problematic tests have been discussed in paragraph 4.1

	November 2015	November 2014	November 2013	October 2012	November 2011
Number of reporting labs	49	52	60	59	56
Number of results reported	330	340	491	427	378
Statistical outliers	26	13	32	30	27
Percentage outliers	7.9%	3.8%	6.5%	7.0%	7.1%

4.3 COMPARISON OF THE NOVEMBER 2015 PROFICIENCY TEST WITH PREVIOUS PTS.

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the target requirements. The conclusions are given the following table:

Parameter	November 2015	November 2014	November 2013	October 2012	November 2011
Acid number (EN62021-1)	()	()	()	()	n.e.
Breakdown Voltage	++	++			
Density at 20°C	+	+/-	+/-	+	-
Di-electric Dissipation Factor	++	++	++	++	++
Specific Resistance				-	
Flash Point	+/-	-	+/-	n.e.	n.e.
Interfacial Surface Tension		+/-			
Kinematic Viscosity at 40°C	-			n.e.	n.e.
Water	-	-	-	-	+

Table 5: comparison determinations against the standard

() = Results between brackets were near or below detection limit, these results should be used with care

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e: not evaluated

APPENDIX 1

Determination of Acid Number on sample #15222; results in g KOH/kg

lab	method	value	mark	z(targ)	remarks
179	D664	0.03	R(0.01)		possible false positive result?
237	D974	0.0028			
273	D974	0.0026			
360	EN62021-2	0.0018			
445	EN62021-1	<0.01			
446					
541	D664	< 0.1			
614	EN62021-1	0.01			
862	D664	0.0089			
963	D974	0.007			
1146	D664	0.007			
1156	IEC62021-1	0.005			
1178	IEC62021-1	0.007			
1262	EN62021-1	0.009			
1264	D664	0.004			
1301	D974	0.006			
1303					
1304	INH-122	< 0.01			
1306	D974	0.00532			
1326	IEC62021-1	0.0056			
1374	IEC62021-1	0.001			
1417	D664	< 0.05			
1435	IEC62021-1	0.009			
1440	EN62021-1	0.005			
1442	IEC62021-2	0.002			
1461					
14/8	IEC62021-1	0.0033			
1505	D974	0.003			
1513	IEC62021-1	0.005			
1510	D974	0.004			
1545	D074	0.0226	D(0.01)		nonsible felse positive regult?
1560	EN62021-1	0.0230	K(0.01)		
1626	D07/	0.003			
1628	0374	0.005			
1660	EN62021-1	<0.01			
1687	D664	0.005			
1702	IFC62021-1	0.004			
1704	IEC62021-1	0.00625			
1719	D664	0.009			
1720					
1743	IEC62021-1	0.038	C,R(0.01)		first reported: 0.057, possible false positive result?
1747	IEC62021-1	0.0180	R(0.01)		possible false positive result?
1760			. ,		
1777	EN62021-1	0.0062			
1890	ISO6619	0.005			
1895	D664	0.03	R(0.01)		possible false positive result?
1947					
2122	EN62021-1	<0.01			
6000					
6015	ISO6618	0.01			
6017	EN62021-1	0.02	R(0.01)		possible false positive result?
	normality	OK			
	n	31			
	outliers	6			
	mean (n)	0.0054			
	st.dev. (n)	0.00248			
	R(calc.)	0.0069			
	R(EN62021-1:03)	(0.0015)			quantification limit >0.014 g KOH / kg

Determination of Breakdown Voltage on sample #15222, results in kV/2.5 mm

			-		
lab	method	value	mark	z(targ)	remarks
179	D877	36.6		-0.47	
237	IEC60156	31.7		-0.64	
273	IEC60156	44.1		-0.21	
360	EN60156	47.8		-0.08	
445	IEC60156	66.3		0.57	
446	IEC60156	42		-0.28	
541					
614					
862	D.077				
963	D877	48.8		-0.04	
1146	IEC156	79.5		1.03	
1150		51.0		0.03	
11/8		54.5		0.16	
1202		00.0 62.7		0.30	
1204		03.7		0.48	
1202	IEC00150	10.70		-1.30	
1203		 50		0.07	
1206		52		0.07	
1300	IEC60156	78.0		0.05	
137/	IEC60156	62.7		0.30	
1417	EN60156	58.8		0.40	
1435	IEC.60156	35.9		-0.50	
1440	EN60156	45.6		-0.15	
1442	IEC60156	50.7		0.02	
1461	EN60156	52.8		0.10	
1478	IEC60156	56.5		0.23	
1505	IEC60156	32.7		-0.61	
1513	IEC60156	63.4		0.47	
1516	IEC60156	38.9		-0.39	
1543					
1547	IEC60156	40.5		-0.33	
1560	IEC60156	56		0.21	
1626	IEC60156	80.3		1.06	
1628	EN60156	41.0		-0.32	
1660	EN60156	46.5		-0.12	
1687	EN60156	49.5		-0.02	
1702	IEC60156	35.9		-0.50	
1704	IEC60156	28.5		-0.75	
1/19	IEC60156	32.2		-0.62	
1720		 4E 7		0.15	
1743	IEC60156	40.7		-0.15	
1760	IEC60156	50.Z		0.22	
1777	IEC60156	52.3		0.07	
1890	EN60156	52.5		0.00	
1895	IEC156	78 125		0.07	
1947	IEC60156	40.8		-0.32	
2122	EN60156	42		-0.28	
6000	EN60156	33.475		-0.58	
6015	EN60156	46.4		-0.13	
6017	IEC60156	62.2		0.43	
	normality	OK			
	n	46			
	outliers	0			
	mean (n)	50.01			
	st.dev. (n)	14.379			
	R(calc.)	40.26			
	K(EN60156:95)	79.82			

0.005

0 | -50

0

50

100

150

Determination of Density at 20°C on sample #15222; results in kg/m 3

lab	method	value	mark	z(targ)	remarks
179	D4052	804.1		-1.83	
237	D4052	804.7		-0.43	
273	D4052	805.0		0.27	
360	D4052	804.8		-0.19	
445	D4052	804.8		-0.19	
446	D4052	805.0		0.27	
541					
614					
862	D4052	804.9		0.04	
963	D4052	804.9		0.04	
1146	ISO12185	804.87		-0.03	
1156					
1178	ISO12185	804.90		0.04	
1262	D4052	804.86		-0.05	
1264	D4052	805.0		0.27	
1301	D4052	804.8	С	-0.19	first reported: 0.8048 kg/m ³
1303					
1304					
1306	D4052	804.9		0.04	
1326	D4052	804.90		0.04	
1374	D7777	806		2.61	
1417	D4052	804.9	_	0.04	
1435	D4052	804.9	С	0.04	reported: 0.8049 kg/m [°]
1440					
1442	D7042	804.9		0.04	
1461	ISO3675	804.4		-1.13	
1478	15012185	804.9		0.04	
1505	D7042	807.0	R(0.01)	4.94	
1513	15012185	804.997		0.27	
1510	1503075	805.7		1.91	
1545	D1209	 960		100 07	reported: 0.962 ka/m^3
1560	D1290	002	C,R(0.01)	133.27	Teponeu. 0.002 kg/m
1626					
1628					
1660	D7042	805.4		1 21	
1687	ISO12185	804 83		-0.12	
1702	ISO3675	804.856		-0.06	
1704	ISO3675	804.9	С	0.04	first reported: 802.5
1719					•
1720					
1743		804		-2.06	
1747					
1760					
1777	D4052	808.397	C,R(0.01)	8.20	first reported: 877.4
1890	ISO12185	804.95		0.16	· · · · · · · · · · · · · · · · · · ·
1895	D4052	804.8	С	-0.19	reported: 0.8048 kg/m°
1947	ISO12185	804.61		-0.64	
2122	INH-12185	804.6		-0.66	
6000	10010105			0.20	
6017	15012105	605.05		0.39	
0017					
	normality	not OK			
	n	33			
	outliers	3			
	mean (n)	804.883			
	st.dev. (n)	0.3587			
	R(calc.)	1.004			
	R(ISO3675:98)	1.200			

Determination of Di-electric Dissipation Factor at 90°C on sample #15222

					-
lab	method	value	mark	z(targ)	remarks
179					
237	IEC60247	0.000338		0.27	
273	IEC60247	0.00011		-0.20	
360	EN60247	0.000029		-0.37	
445	IEC60247	0.00029		0.17	
446	IEC60247	<0.0010			
541					
614					
862	15000047				
963	IEC60247	0.0014		2.48	
1146	15060047			0.22	
1170		0.00036		0.32	
11/0	IEC00247	0.00005		-0.32	
1202		0.00010	P(0.01)	-0.00	
1204	EC00247	0.00209	R(0.01)	0.07	
1202	EIN00247	0.00010		-0.22	
1303	INH-125	0.000051		-0.32	
1304	IEC60247	0.000031		-0.52	
1326	IEC60247	0.000132		-0.13	
1374	IEC60247	0.0002		-0.01	
1417					
1435	EN60247	0 00018		-0.06	
1440	21100211				
1442	IEC60247	0.000182		-0.05	
1461	EN60247	0.000054		-0.32	
1478	IEC60247	0.000084		-0.25	
1505	IEC60247	0.00009		-0.24	
1513	IEC60247	0.00018		-0.06	
1516	IEC60247	0.00037		0.34	
1543					
1547	D924	0.0089	R(0.01)	18.03	
1560	IEC60247	0.00012		-0.18	
1626	IEC60247	0.00001		-0.41	
1628	EN60247	0.00025		0.09	
1660	EN60247	0.00155	R(0.01)	2.79	
1687	EN60247	0.000061		-0.30	
1702	IEC60247	0.000026		-0.37	
1704	IEC60247	0.000665		0.95	
1719	IEC60247	0.00004		-0.35	
1720	IEC60247	0.000678		0.08	
1743	IEC60247	0.000078	P(0.01)	1/ 00	
1760	IEC60247	0.0070	1((0.01)	-0.36	
1777	IEC60247	0.000032		-0.30	
1890	IEC60247	0.000048		-0.33	
1895	12000247				
1947					
2122	EN60247	0.000164		-0.09	
6000					
6015	EN60247	0.0001645		-0.09	
6017	EN60247	0.0001		-0.22	
	normality	not OK			
	11 outliere	34			
	outiliers	4			
	et dev (n)	0.000207			
	R(calc)	0.0002041			
	R(EN60247:04)	0.001350			

Determination of Specific Resistance at 90°C on sample #15222; results in $G\Omega m$

lab	method	value	mark	z(targ)	remarks
179					
237	IEC60247	3160	С	0.35	first reported: 316
273					
360	EN60247	9180		6.10	
445	IEC60247	5.491		-2.66	
446					
541					
614					
862	54400				
963	D1169	244.0		-2.43	
1146	15000047				
1150	IEC60247	1800	0.0(0.04)	-0.95	first reported: 20000 0
11/0	IEC00247	19/30.0	C,R(0.01)	6 57	liist reported. 20000.0
1202		9070.2		1 02	
1204	EC00247	20880	P(0.01)	-1.03	
1301	LIN00247	20000	K(0.01)	17.27	
1303	INH-125	7415		4 4 1	
1306	IEC.60247	3730	C	0.89	first reported: 3.73
1326	12000247		0		
1374	IEC60247	2360		-0 41	
1417					
1435	IEC60247	>20000.0			
1440					
1442	IEC60247	3990		1.14	
1461					
1478	IEC60247	3680		0.85	
1505					
1513					
1516					
1543					
1547					
1560	IEC60247	776		-1.93	
1626	IEC60247	854		-1.85	
1628					
1660	ENC0047				
1087	EN60247	1700	C D(0.01)	-0.99	first reported: 100000
1702	IEC60247	1220	C,R(0.01)	40.07	liist reported. 100000
1704	IEC60247	2550	C	-1.41	roported: 2550E0 COm (possible unit error?)
1719	1200247	2000	C	-0.23	reported. 2000L9 Gizin (possible drift error?)
1743	IEC.60247	1230		-1 49	
1747	IEC60247	257.3	C	-2 42	first reported: 25730.0
1760	IEC60247	14190	R(0.05)	10.88	
1777	12000211		1((0.00)		
1890	IEC60247	3290		0.47	
1895					
1947					
2122	EN60247	2140		-0.62	
6000					
6015	EN60247	1150		-1.57	
6017	EN60247	7.98*10 ¹⁴	ex		excluded, testtemp. used was 20°C
	normality	not OK			
	normanity	22			
	outliers	4 (+1ex)			
	mean (n)	2793 05			
	st.dev. (n)	2718.750			
	R(calc.)	7612.50			
	R(EN60247:04)	2932.70			

Determination of Flash Point PMcc on sample #15222; results in °C

lab	method	value	mark	z(targ)	remarks
179	D93	160.0	R(0.01)	-6 61	
237	D93	198		1.19	
273	D93	190	С	-0.45	first reported: 216
360	ISO2719	191.0	-	-0.25	
445	ISO2719	186.0		-1.27	
446	D93	190.5		-0.35	
541	ISO2719	193.5		0.27	
614					
862	D93	190.0		-0.45	
963	D92	178	ex	-2.91	excluded for method is not equivalent to Flash Point PMcc
1146	in house	189.15		-0.62	
1156					
1178	ISO2719	202.0		2.01	
1262	ISO2719	198.5		1.29	
1264	D92	192	ex	-0.04	excluded for method is not equivalent to Flash Point PMcc
1301	D93	184		-1.08	
1303					
1304	03	179.3		2.85	
1326	D93	170.5		-2.00	
1374					
1417	IP34	186 0		-1 27	
1435	D93	193		0.17	
1440					
1442	ISO2719	191.5		-0.14	
1461					
1478	ISO2719	196.0		0.78	
1505	D93	195		0.58	
1513	ISO2719	191.0		-0.25	
1516	ISO2719	191		-0.25	
1543					
1547	D92	180 <	ex		excluded for method is not equivalent to Flash Point PMcc
1560	ISO2719	193		0.17	
1626	D93	196		0.78	
1020	15027 19	190.5		0.00	
1687	D93	195		0.56	
1702	1502719	186.0		-1 27	
1704	1002110				
1719					
1720					
1743	ISO2719	197.5		1.09	
1747					
1760					
1777	D92	192	ex,C	-0.04	excluded for method is not equivalent to Flash Point PMcc
1890					
1895					
1947					
2122	10.00710				
6000	ISO2719	190.825		-0.28	
6015	D7236	200.0		1.60	
0017					
	normality	OK			
	n	27			
	outliers	1 (+3ex)			
	mean (n)	192.20			
	st.dev. (n)	5.294			
	R(calc.)	14.823			
	R(ISO2719:02-A)	13.646			R(ISO2719:02-A) = R(D93:15a-A) = R(IP34:03-A)

Determination of Interfacial Surface Tension on sample #15222; results in mN/m

			-	4	
lab	method	value	mark	z(targ)	remarks
179	D971	36	R(0.05)	-8.13	
237					
360	D971	51.0		0.15	
445	D971	56.8		3.35	
446	2011				
541					
614	ISO6295	55.1		2.41	
862					
963	D971	49.2		-0.84	
1146	D074				
1156	D971	49.6		-0.62	
1262	D971	49.0 48.1		-0.62	
1262	D971	55 27		2 51	
1301	D971	50.9		0.10	
1303					
1304	INH-123	54.6		2.14	
1306	D971	41.8		-4.93	
1326	ISO6295	49.82		-0.50	
1374	D971	50.1		-0.35	
1417	1000005			4 50	
1435	1500295 D071	47.9 50.75		-1.50	
1440	EN14210	49 995		-0.40	
1461				-0.40	
1478	D971	51.7		0.54	
1505	D971	51.6		0.48	
1513	D971	51.47		0.41	
1516	D971	54.9		2.30	
1543	D074				
1547	D971	45.5		-2.88	
1500	D971 ISO6205	40.0 51.76		-1.23	
1628	1000295				
1660	D971	44.1		-3.66	
1687					
1702	D971	49.811		-0.51	
1704	ISO6295	48.55		-1.20	
1719	in house	32	R(0.05)	-10.34	
1720	D074			4.00	
1743	D971	48.5		-1.23	
1760					
1777	D971	47.3		-1.89	
1890	2011				
1895	IEC971	51.6		0.48	
1947					
2122	ISO6295	61.76		6.09	
6000	D074				
6015	D971	54.925		2.32	
6017					
	normality	suspect			
	n	31			
	outliers	2			
	mean (n)	50.726			
	st.dev. (n)	3.8828			
	R(calc.)	10.872			
	R(D971:12)	5.073			

Determination of Kinematic Viscosity at 40°C on sample #15222; results in mm²/s

lab	method	value	mark	z(targ)	remarks
179	D445	10.0		-0.23	
237	D445	10.02		0.51	
273	D445	9.995		-0.41	
360	ISO3104	10.013		0.25	
445	ISO3104	9.9899		-0.60	
446	D445	10.00		-0.23	
541	ISO3104	9.964		-1.56	
614					
862	D445	10.01		0.14	
963	D445	10.04		1.24	
1146	D445	10.014		0.29	
1156					
1178	DIN53015	10.24	R(0.01)	8.61	
1262	D7042	9.960		-1.70	
1264	D7042	10.033		0.99	
1301	D445	10.04	С	1.24	first reported: 9.782
1303					
1304					
1306	D445	10.21	R(0.01)	7.50	
1326	D445	10.01	-	0.14	
1374					
1417	D7279	10.01		0.14	
1435	D7042	10.065		2.16	
1440					
1442	D7042	10.054		1.76	
1461	ISO3104	10.1169		4.07	
1478	ISO3104	9.43	C,R(0.01)	-21.22	first reported: 10.43
1505	D7042	10.010		0.14	
1513	ISO3104	9.98359		-0.83	
1516	ISO3104	10.081		2.75	
1543					
1547	D445	9.96		-1.70	
1560	ISO3104	9.958		-1.78	
1626	D445	9.98		-0.97	
1628	ISO3104	10.010		0.14	
1660	D7042	9.93		-2.81	
1687	1000/0				
1702	ISO3104	9.9		-3.91	
1704	ISO3104	9.992	С	-0.52	first reported: 10.23
1719					
1720	1000101		0		
1743	1503104	10.02	C	0.51	tirst reported: 10.4
1/47					
1760	Dee		0		first series to do 40.04
1/77	088	10.00	C	-0.23	TIRST reported: 10.91
1890	D.445				
1895	D445	9.85	R(0.05)	-5./5	
1947					
2122	INH-445	9.789	R(0.01)	-8.00	
6000	ISO3104	10.03042		0.89	
6015	D7279	10.01		0.14	
6017					
	in a man a life i				
	normality	suspect			
	П 	32			
	outliers	5			
	mean (n)	10.006			
	st.dev. (n)	0.0422			
		0.110			
	R(13U3104:90)	0.070			

Determination of Water on sample #15222; results in mg/kg

			-	4	
lab	method	value	mark	z(targ)	remarks
179	D6304	11		-3.04	
237	D6304	20.22		1.03	
273	IEC60814	16.3		-0.70	
300	EN60814	15.0		-1.27	
445	IEC60814	14		-1.72	
440 541	IEC00014	10		1 27	
041 614	EN60814	20.4		1.37	
862	D6304	15	C	-1.27	first reported: 7 17
963	D1533	21	0	1.37	
1146	D6304	10		-3.48	
1156	IEC60814	18.4		0.23	
1178	IEC60814	18.5		0.27	
1262	EN60814	17.2		-0.30	
1264	D1533	13.7		-1.85	
1301	IEC60814	21		1.37	
1303					
1304	INH-121	17.5		-0.17	
1306	D1533	19		0.49	
1326	D1533	19.6		0.76	
1374	IEC60814	17.9		0.01	
1417	D6304	18		0.05	
1435	IEC60814	20		0.93	
1440	EN60814	18.5		0.27	
1442	IEC60814	18.9		0.45	
1401	IEC60814	23.1		2 30	
1505	D1533	25.0		2.50	
1513	IFC60814	17.2		-0.30	
1516	IEC60814	17.7		-0.08	
1543					
1547	D1533	18.74		0.38	
1560	IEC60814	17.5		-0.17	
1626	IEC60814	15.3		-1.14	
1628	EN60814	20.2		1.02	
1660	EN60814	12.8		-2.24	
1687	IEC60814	18.518		0.28	
1702	IEC60814	18.15		0.12	
1704	IEC60814	16.9		-0.44	
1/19	IEC60814	14.8		-1.36	
1720				0.02	
1743	IEC60814	20		0.93	
1760		19.205		0.50	
1777	IEC60814	18 1		0.09	
1890	IEC60814	19		0.49	
1895	D1533	29.46	R(0.05)	5.11	
1947	IEC60814	13.566	()	-1.91	
2122	EN60814	20.77		1.27	
6000					
6015	DIN51777	19.5		0.71	
6017	EN60814	18.7		0.36	
	normolit:	OK			
	normality	UK 45			
	u outliors	40 1			
	mean (n)	17 886			
	st dev (n)	2 9364			
	R(calc.)	8 222			
	R(EN60814:98)	6.344			

APPENDIX 2

Number of participants per country

1 lab in ARGENTINA

- 4 labs in AUSTRALIA 2 labs in BELGIUM
- 4 labs in BULGARIA
- 2 labs in CHINA, People's Republic
- 1 lab in CROATIA
- 1 lab in ESTONIA
- 3 labs in FRANCE
- 4 labs in GERMANY
- 1 lab in GREECE
- 1 lab in INDIA
- 1 lab in ITALY
- 1 lab in MALAYSIA
- 1 lab in NETHERLANDS
- 1 lab in NEW ZEALAND
- 1 lab in NIGERIA
- 2 labs in PORTUGAL
- 1 lab in SAUDI ARABIA
- 1 lab in SINGAPORE
- 1 lab in SLOVENIA
- 2 labs in SOUTH AFRICA
- 1 lab in SPAIN
- 3 labs in SUDAN
- 1 lab in SWEDEN
- 2 labs in TURKEY
- 4 labs in UNITED ARAB EMIRATES
- 4 labs in UNITED KINGDOM
- 1 lab in UNITED STATES OF AMERICA

APPENDIX 3

Abbreviations:

C = final result after checking of first reported suspect result
--

- C(0.01) = outlier in Cochran's outlier test
- C(0.05) = straggler in Cochran's outlier test
- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- R(0.01) = outlier in Rosner outlier test
- R(0.05) = straggler in Rosner outlier test
- ex = excluded from calculations
- n.a. = not applicable
- n.e = not evaluated
- W = withdrawn on request participant
- U = reported in a deviating unit
- E = error in calculations
- SDS = Safety Data Sheet
- fr. = first reported

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, April 2014
- 2 prNEN 12766-2:2001
- 3 ASTM E178-02
- 4 ASTM E1301-03
- 5 ISO 5725-86
- 6 ISO 5725, parts 1-6, 1994
- 7 ISO13528-05
- 8 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 9 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 10 IP 367/96
- 11 DIN 38402 T41/42
- 12 P.L. Davies, First reported Z. Anal. Chem, <u>331</u>, 513, (1988)
- 13 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 14 Analytical Methods Committee Technical Brief, No4 January 2001
- 15 The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M. Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)
- 16 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, *Technometrics*, 25(2), pp. 165-172, (1983)