Results of Proficiency Test Disperse dyes in textile March 2015

Organised by:Institute for Interlaboratory Studies
Spijkenisse, the NetherlandsAuthor:ing. L. Dijkstra
Correctors:Correctors:dr. R.G. Visser, ing. R.J. Starink & ing. C.M. Nijssen-Wester
iis15A03

July 2015

CONTENTS

1	INTRODUCTION	3
2	SET UP	4
2.1	ACCREDITATION	4
2.2	PROTOCOL	4
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYSES	6
3	RESULTS	6
3.1	STATISTICS	6
3.2	GRAPHICS	7
3.3	Z-SCORES	7
4	EVALUATION	8
4.1	EVALUATION PER SAMPLE	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
5	DISCUSSION	10

Appendices:

1.	Data and statistical results	11
2.	Summary of all other reported disperse dyes	19
3.	Summary of reported analytical details	20
4.	Number of participants per country	22
5.	Abbreviations and literature	23

1 INTRODUCTION

Coloured fabrics, when in contact with human skin, may cause Allergic Contact Dermatitis. The following twenty Dyestuffs are classified as allergenic. Textiles are not allowed to contain more than 50 mg/kg of the 20 below listed dyes according to Öko-tex Standard 100 edition 01/2012 (reference 13), of which 9 are mentioned in DIN54231:

C.I. Disperse Blue 1	CASno 2475-45-8	C.I.no 64 500	(in DIN54231)
C.I. Disperse Blue 3	CASno 2475-46-9	C.I.no 61 505	(in DIN54231)
C.I. Disperse Blue 7	CASno 3179-90-6	C.I.no 62 500	
C.I. Disperse Blue 26	CASno 3860-63-7	C.I.no 63 305	
C.I. Disperse Blue 35	CASno 12222-75-2 (*)		(in DIN54231)
C.I. Disperse Blue 102	CASno 12222-97-8		
C.I. Disperse Blue 106	CASno 12223-01-7		(in DIN54231)
C.I. Disperse Blue 124	CASno 61951-51-7		(in DIN54231)
C.I. Disperse Brown 1	CASno 23355-64-8		
C.I. Disperse Orange 1	CASno 2581-69-3	C.I.no 11 080	
C.I. Disperse Orange 3	CASno 730-40-5	C.I.no 11 005	(in DIN54231)
• C.I. Disperse Orange 37/76	CASno 13301-61-6	C.I.no 11 132	(in DIN54231)
C.I. Disperse Red 1	CASno 2872-52-8	C.I.no 11 110	(in DIN54231)
C.I. Disperse Red 11	CASno 2872-48-2	C.I.no 62 015	
C.I. Disperse Red 17	CASno 3179-89-3	C.I.no 11 210	
C.I. Disperse Yellow 1	CASno 119-15-3	C.I.no 10 345	
C.I. Disperse Yellow 3	CASno 2832-40-8	C.I.no 11 855	(in DIN54231)
C.I. Disperse Yellow 9	CASno 6373-73-5	C.I.no 10 375	
C.I. Disperse Yellow 39	CASno 12236-29-2		
C.I. Disperse Yellow 49	CASno 54824-37-2		

* Disperse Blue 35 consists of a mixture of components, of which the monomethylated 1,8diamino-4,5-dihydroxyanthraquinone (CASno 56524-77-7) and the dimethylated 1,8diamino-4,5-dihydroxyanthraquinone (CASno 56524-76-6) are responsible for the sensitizing potency of Disperse Blue 35, see also report iis09A04X of May 2009.

The German ban on the above disperse dyes has become a widely publicised issue in the textile industry. Dyestuff manufacturers, processors and exporters are careful in the selection of disperse dyes. However, several dyestuffs that are skin sensitizers may still be in use for dyeing polyester and nylon.

In this context and in response to requests from several laboratories, the Institute for Interlaboratory Studies (iis) organises a proficiency test for disperse dyes in textile in the annual proficiency test program since 2003.

In the 2015 interlaboratory study 85 laboratories in 23 different countries registered for participation. See appendix 4 for the number of participants per country. In this report the results of the 2015 proficiency test are presented and discussed.

2 SET UP

The Institute for Interlaboratory Studies in Spijkenisse was the organizer of this proficiency test. It was decided to use in this proficiency test 2 different textile samples, treated with banned disperse dyestuffs. The textile samples were prepared by two different third parties and tested for homogeneity by an accredited laboratory. The participants were asked to report the analytical results with one extra figure using the indicated units on the report form. These results with an extra figure are preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentially of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3). This protocol can be downloaded via the FAQ page of the iis website http://www.iisnl.com.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

Two different bulk materials, prepared by two different third parties, were used in this proficiency test. The first bulk sample, a polyester fabric dyed with two banned Allergenic dyes, was cut in small pieces and homogenized. From this batch, 100 subsamples were prepared of 3 gram each and labelled #15023.

The second bulk sample, a cotton fabric dyed with two other banned Allergenic dyes, was also cut in small pieces and homogenized. From this batch also 100 subsamples were prepared of 1.5 gram each.

The homogeneity of the subsamples #15023 was checked by determination of Disperse Red 17 in accordance with DIN54231:05 on 8 stratified randomly selected samples. The homogeneity of the subsamples #15024 was checked by determination of Disperse Red 11 in accordance with DIN54231:05 on 8 stratified randomly selected samples. See the following tables for the test results.

	Disperse Red 17
	in mg/kg
sample #15023-1	98.3
sample #15023-2	96.1
sample #15023-3	93.2
sample #15023-4	101.4
sample #15023-5	103.1
sample #15023-6	107.5
sample #15023-7	105.1
sample #15023-8	108.2

table 1: homogeneity test of subsamples #15023

	Disperse Red 11 in mg/kg
sample #15024-1	26.7
sample #15024-2	28.7
sample #15024-3	29.7
sample #15024-4	26.6
sample #15024-5	26.7
sample #15024-6	30.1
sample #15024-7	29.8
sample #15024-8	27.1

table 2: homogeneity test of subsamples #15024

From the above test results, the repeatabilities were calculated and subsequently compared with the corresponding repeatabilities in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Disperse Red 17 #15023 in mg/kg	Disperse Red 11 #15024 in mg/kg
r(calc)	15.1	4.4
Reference method	DIN54231:05	DIN54231:05
r(reference)	27.1	7.5

table 3: repeatabilities of subsamples #15023 and #15024

The repeatabilities of the test results of the determined disperse dyes were both in good agreement with the repeatability that is mentioned in DIN54231:05. Therefore homogeneity of the subsamples was assumed.

To each of the participating laboratories, one sample #15023 and one sample #15024 were sent on March 4, 2015.

2.5 ANALYSES

The participants were asked to determine the concentrations of 20 forbidden allergenic dyes, applying the analysis procedure that is routinely used in the laboratory. To get comparable results a detailed report form, on which the requested dyestuffs and the units were pre-printed, was sent together with each set of samples. Furthermore an extra report form for reporting the analytical details was enclosed. Also a letter of instructions was added.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered. The original data are tabulated in the appendices of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder fax was sent to those laboratories that had not yet reported. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected data are placed under 'Remarks' in the result tables in appendix 1. A list of abbreviations used in the tables can be found in appendix 5.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organization, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3)

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>..." were in general not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

In accordance to ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test and by R(0.01) for the Rosner General ESD test (see appendix 5, no.18). Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test and by R(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test and by R(0.05) for the averages and the standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation, no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 5; nos.16 and 17). Also a normal Gauss curve was projected over the Kernel Density Graph.

3.3 Z-SCORES

To evaluate the performance of the individual participating laboratories the z-scores were calculated. In order to be able to have an objective evaluation of the performance of the individual participants, it was decided to evaluate this performance against the literature requirements. Therefore the z-scores were calculated using a target standard deviation. This target standard deviation was calculated from the literature reproducibility by division with 2.8.

The z_(target)-scores were calculated according to:

 $z_{\text{(target)}} = (\text{individual result} - \text{average of proficiency test}) / \text{target standard deviation}$

The $z_{(target)}$ -scores are listed in the result tables in appendix 1.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate the fit-for-useness of the reported test result.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. The usual interpretation of z-scores is as follows:

 $\begin{aligned} |z| < 1 & good \\ 1 < & |z| < 2 & satisfactory \\ 2 < & |z| < 3 & questionable \\ 3 < & |z| & unsatisfactory \end{aligned}$

4 EVALUATION

During the execution of this proficiency test, problems occurred with the delivery of the samples to the laboratories in Bangladesh, P.R. of China, Pakistan, Tunisia and Turkey. These laboratories received the samples late. Twenty-three participants reported test results after the deadline and two participants did not report any test results at all. Finally, 83 participants reported 275 numerical results. Observed were no less than 46 outlying test results, which is 16.7% (!) of the numerical results. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER SAMPLE

In this section the results are discussed per sample. All test results reported on the textile samples are summarised in appendix 1. As in previous PTs almost all participants reported to have used DIN54231 as test method, only a small number of test details were requested to be reported (see appendix 3).

In DIN54231 no reproducibility is mentioned. Only the standard deviation for the repeatability is mentioned. Therefore, the target reproducibility was estimated as follows: the repeatability standard deviation was multiplied with 2.8 to get the target repeatability. And this was multiplied with 3 to get an estimate of the target reproducibility.

<u>Textile #15023</u>: This polyester was dyed by a third party with the banned dyes: Disperse Orange 1 and Disperse red 17. The results reported by the participating laboratories vary strongly (from 73.65 mg/kg – 1398 mg/kg for Disperse Orange 1 and from 35.8 mg/kg – 981 mg/kg for Disperse Red 17). For Disperse Orange 1, nine statistical outliers were observed and the calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility of DIN54231:05. For Disperse Red 17, eleven statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility of DIN54231:05. All laboratories would have rejected this sample for containing too much Allergenic Dyestuffs (acc. to the limit of Öko-tex Std.100 edition 01/2015 of 50 mg/kg).

Textile #15024: This fabric was dyed by a third party with the banned dye: Disperse Blue 35 and Disperse Red 11. The results reported by the participating laboratories vary strongly (from 2.1 mg/kg - 129 mg/kg for Disperse Blue 35 and from 4.3 mg/kg – 437 mg/kg for Disperse Red 11). For Disperse Blue 35, six statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility of DIN54231:05. For Disperse Red 11, twenty statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the estimated reproducibility of DIN54231:05. Laboratory 2386 reported the presence of Disperse Red 1 in sample #15024. Possibly the peak of Disperse Red 11 was misidentified by this laboratory (as laboratory 2272 did initially). At least 29 laboratories would not have rejected this sample for containing too much Allergenic Dyestuffs (acc. to the limit of Öko-tex Std.100 edition 01/2012 of 50 mg/kg). All other laboratories would have rejected this sample.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibilities as declared by the relevant standard method and the reproducibilities as found for the group of participating laboratories.

The number of significant results, the average results, the calculated reproducibilities (standard deviation*2.8) and the target reproducibilities, derived from the official test method DIN54231:05 are compared in the next tables.

Parameter	unit	n	average	2.8 * sd	R (target)
Disperse Orange 1	mg/kg	71	226	266	181
Disperse Red 17	mg/kg	70	120	112	96

table 4: reproducibilities for sample #15023

Parameter	unit	n	average	2.8 * sd	R (target)
Disperse Blue 35	mg/kg	29	24	21	19
Disperse Red 11	mg/kg	59	29	33	23

table 5: reproducibilities for sample #15024

Without further statistical calculations it can be concluded that for the evaluated allergenic dyestuffs the group of participating laboratories may have difficulties with the analysis of Disperse Orange 1 and Disperse Red 11. See also the discussion in paragraphs 4.1 and 5.

5 DISCUSSION

The uncertainties in the test results of the evaluated Disperse dyes in the iis15A03 PT are listed in the next table and are comparable with previous proficiency tests.

	March 2015	March 2014	March 2013	March 2012	March 2011	2010 – 2006	target DIN54321
Disperse Blue 1	n.e.	n.e.	n.e.	n.e.	n.e.	43%	27%
Disperse Blue 3	n.e.	n.e.	56%	42%	51%	36 - 51%	27%
Disperse Blue 26	n.e.	n.e.	n.e.	68%	n.e.	47 - 56%	27%
Disperse Blue 35	31%	n.e.	n.e.	n.e.	n.e.	57 - 84%	27%
Disperse Blue 106	n.e.	28%	n.e.	n.e.	n.e.	n.e.	27%
Disperse Brown 1	n.e.	33%	n.e.	n.e.	n.e.	n.e.	27%
Disperse Orange 1	42%	n.e.	47%	n.e.	44%	n.e.	27%
Disperse Orange 3	n.e	31%	n.e.	n.e.	n.e.	24 – 54%	27%
Disperse Red 1	n.e.	n.e.	n.e.	n.e.	36%	63%	27%
Disperse Red 11	41%	n.e.	n.e.	65%	n.e.	45 - 56%	27%
Disperse Red 17	33%	n.e.	n.e.	n.e.	n.e.	n.e.	27%
Disperse Yellow 3	n.e.	n.e.	29%	n.e.	28%	n.e.	27%
Disperse Yellow 9	n.e.	n.e.	n.e.	n.e.	n.e.	31%	27%
Disperse Yellow 49	n.e.	n.e.	n.e.	n.e.	n.e.	54%	27%

table 6: development of uncertainties over the last years

From the above table it is clear that for all four Disperse dyes investigated in this PT, a quality improvement is observed. But all uncertainties are still above the target uncertainty of 27%, estimated from DIN 54231. All participants detected the added dyestuffs in both sample #15023 and sample #15024. However, a number of laboratories had difficulties to detect Disperse Blue 35, see also PT iis09A04.

From the details, it is clear that almost all participants used Methanol as extraction solvent. There is also little variation in temperature (except for two participants) and extraction time (except four participants) used: 70°C and 30 minutes. As intake 68 participants used 0.5 gram and 13 participants used 1.0 gram.

It is striking that all Kernel Density plots are quite similar. All plots show a heavy tail at the higher end. In these high end tails, 99% of all statistical outliers are present. A possible explanation for this phenomenon may be found in the calibration. DIN54231 prescribes a calibration at 6 concentrations, from 5 mg/l up to 50 mg/l methanol. When a laboratory prepares a stock solution of 500 mg/l for this purpose, it may encounter some difficulties with the dissolution of some of the dye(s) in methanol. Heating and sonication help to dissolve the dye(s). However, when the stock solution is kept at 4°C, something that a lab may do as standard procedure, part of the dye(s) may precipitate. This may be unnoticed due to the dark colour of the solution. The consequences of this may be lower actual concentrations of the calibration solutions and higher test results during the analysis of a sample. Skipping the cooling step at 4°C and direct dilution of the stock solution to the required calibration solution may prevent precipitation of the dyes and will result in reliable test results.

Determination of Disperse Orange 1 (CASno.2581-69-3) in sample #15023; results in mg/kg

213 Inc. Inc. Inc. 252 In Nuclean 1338 R(0.01) 18.11 551 Inst221 162.3 -0.93 first reported. 1723.0 2119 Inst221 162.45 C. (R(0.01) 6.16 first reported: 848.34 2132 Inst221 162.45 C. (R(0.01) 6.16 first reported: 848.34 2132 Inst221 203.93 -0.30 1.16 first reported: 848.34 2130 Inst221 203.93 -0.30 1.170 1.050 2141 Inst221 171 -0.650 1.170 1.050 2141 Inst221 1171 -0.650 1.170 1.030 2142 Inst221 1171 -0.650 1.030 1.030 1.030 2144 Inst221 160 1.170 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1	lab	method	value	mark	z(targ)	remarks
382 In house 1398 R(0.01) 18.14 663 DNN54231 165.6 -1.17 7110 DNN54231 113.6 -1.17 7111 DNN54231 30.3 -1.16 7112 DNN54231 30.3 -1.16 7113 DNN54231 30.3 -1.16 7113 DNN54231 30.3 -1.16 7113 DNN54231 30.3 -0.30 7114 -0.85 -0.30 7115 DNN54231 10.1 7114 -0.85 7115 DNN54231 10.1 7114 -0.85 7115 DNN54231 10.1 7114 -0.85 7115 DNN54231 12.6 7114 -0.85 7114 -0.85 7115 DNN54231 13.6 7114 -1.24 7115 DNN54231 14.1 7115 DNN54231 14.1 7115 <th>213</th> <th>moniou</th> <th></th> <th>mark</th> <th></th> <th>Tomarko</th>	213	moniou		mark		Tomarko
S51	362	in house	1398	R(0.01)	18.11	
425 DNR4231 150.6 -1.17 115 DNR4231 124.9 C. R(0.01) 6.16 1132 DNR4231 301.3 1.64 1133 DNR4231 306.3 1.64 1131 DNR4231 306.3 1.64 1131 DNR4231 306 1.70 1135 DNR4231 306 1.70 1146 DNR4231 323 1.50 1146 DNR4231 323 1.50 1147 DNR4231 323 1.50 1148 DNR4231 225 0.53 1141 -0.85 0.91 1142 DNR4231 225 0.54 1141 225 DNR4231 166.12 0.62 1141 115 -1.16 1.62 1151 DNR4231 144.8 -1.27 1151 DNR4231 144.8 -1.27 1151 DNR4231 150.9 -1.61 1151 DNR4231 150.9 -1.61 1151 DNR4231 150.9 </td <td>551</td> <td></td> <td></td> <td></td> <td></td> <td></td>	551					
100 100 100 100 100 1213 Initication 100 6.16 first reported: 172.0 1213 Initication 6.24.95 C.R(0.01) 6.16 first reported: 172.0 1213 Initication 206.39 -0.30 -0.30 1215 Initication -0.70 -0.30 1217 Initication -0.70 1218 Initication -0.70 1219 Initication -0.70 1211 Initication -0.70 1212 Initication -0.70 1213 2015 -0.36 2247 Initication -1.25 10184231 202.5 -0.36 2239 Initication -1.26 2311 Initication -1.26 2312 Initication -1.26 2313 Initication -1.41 2330 Initication -1.41 2331 Initication -1.41 2335 Initication -1.41 2335 Initication -1.41 </td <td>623</td> <td>DIN54231</td> <td>150.6</td> <td></td> <td>-1.17</td> <td></td>	623	DIN54231	150.6		-1.17	
122 Dink4231 323 C,R(0.01) 6.16 inst reported: 848.34 133 Dink4231 301.3 1.16 133 Dink4231 306.39 1.30 134 Dink4231 308 1.70 135 Dink4231 181 -0.70 137 Dink4231 181 -0.70 138 Dink4231 181 -0.70 139 Dink4231 184 -0.70 131 Dink4231 285 0.91 12227 Dink4231 285 0.91 12280 Dink4231 126 0.91 12281 Dink4231 146 -1.24 139 Dink4231 146 -1.24 130 Dink4231 146 -1.24 130 Dink4231 145 -1.26 131 147 -0.82 1330 Dink4231 135 -1.14 1435 Dink4231 136 -1.18 1535 Dink4231 136 -1.18 1545 Dink4231 <td>2100</td> <td>DIN54231 DIN54231</td> <td>102.3</td> <td>C</td> <td>-0.99</td> <td>first reported: 1723.0</td>	2100	DIN54231 DIN54231	102.3	C	-0.99	first reported: 1723.0
2132 DNN64231 332.1 1.64 2133 DNN64231 206.39 4.030 2138 DNN64231 206.39 4.030 2165 DNN64231 171 4.045 2172 DNN64231 179 4.73 2184 DNN64231 202.5 4.05 2275 DNN64231 202.5 4.03 2271 DNN64231 202.5 4.03 22721 DNN64231 202.5 4.03 22722 DNN64231 407.9 2.81 2283 DNN64231 165 -1.24 2300 DNN64231 166 -1.24 2301 DNN64231 166 -1.24 2302 DNN64231 166 -1.24 2303 DNN64231 135 -1.16 2304 DNN64231 135 -1.47 2305 DNN64231 136 -1.47 2305 DNN64231 136 -1.47 2305 DNN64231 136 -1.47 2305 DNN64231 1	2129	in house	624.95	C,R(0.01)	6.16	first reported: 848.34
2137 DIN54231 301.3 1.16 2138 DIN54231 306 39 0.30 2139 DIN54231 306 39 0.30 2134 DIN54231 306 39 0.30 2141 DIN54231 107 0.66 0.33 2121 DIN54231 323 1.50 0.33 2222 DIN54231 202.5 0.50 0.51 2238 DIN54231 264 0.52 0.50 2249 DIN54231 164 -1.56 2230 DIN54231 164 -1.24 2330 DIN54231 164 -1.16 2330 DIN54231 151 -1.16 2330 DIN54231 152.0 -1.14 2350 DIN54231 152.0 -1.14 2351 DIN54231 152.0 -1.16 2352 DIN54231 152.0 -1.16 2352 DIN54231 156.9 -1.16 2352 DIN54231 156.9 -1.16 2350 <td< td=""><td>2132</td><td>DIN54231</td><td>332.1</td><td></td><td>1.64</td><td>'</td></td<>	2132	DIN54231	332.1		1.64	'
2138 DIN54231 206.39 -0.30 2185 DIN54231 171 -0.85 2181 DIN54231 171 -0.85 2247 DIN54231 350.8 133 2247 DIN54231 202.5 -0.36 2247 DIN54231 202.5 -0.36 2248 DIN54231 205.4 -0.91 2272 DIN54231 205.4 -0.91 2282 DIN54231 125.4 -1.24 2301 DIN54231 186.12 -0.62 2310 DIN54231 186.1 -1.12 2311 DIN54231 186.1 -1.14 2325 DIN54231 150 -1.14 2335 DIN54231 152.0 -1.14 2336 DIN54231 152.0 -1.14 2335 DIN54231 152.0 -1.14 2336 DIN54231 150 -1.47 2337 DIN54231 150 -1.18 2335 DIN54231 152.0 -1.18 2336 DIN54231 </td <td>2137</td> <td>DIN54231</td> <td>301.3</td> <td></td> <td>1.16</td> <td></td>	2137	DIN54231	301.3		1.16	
2136 Dirketabili 3.31 1.045 2117 Dirketabili 3.31 1.045 2118 Dirketabili 1.03 2114 Dirketabili 1.03 2124 Dirketabili 32.3 1.50 2247 Dirketabili 32.3 1.50 2255 Dirketabili 32.3 1.50 2271 Dirketabili 22.5 -0.36 2282 Dirketabili 22.5 -0.36 2290 Dirketabili 25.4 -1.56 2290 Dirketabili 146 -1.24 2310 Dirketabili 146.5 -1.26 2311 Dirketabili 146.6 -1.14 2320 Dirketabili 146.6 -1.14 2331 Dirketabili 146.6 -1.14 2332 Dirketabili 150.0 -1.14 2345 Dirketabili 150.0 -1.14 2355 Dirketabili 150.0 -1.47 2365 Dirketabili 150.0 -1.47 2365 Dirketabili 150.0 -1.47 2365 Dirketabili 150.9 -1.16 2370 Dirketabili 150.9 -1.1	2138	DIN54231	206.39		-0.30	
2172 DNK54231 181 -0.70 2140 DNK54231 350.8 1.93 2247 DNK54231 320.8 1.93 2247 DNK54231 225 -0.36 2271 DNK54231 407.9 2.81 2289 DNK54231 407.9 2.81 2280 DNK54231 186.1 -1.86 2281 DNK54231 186.1 -1.86 2381 DNK54231 146.1 -1.86 2381 DNK54231 146.1 -1.61 2390 DNK54231 149.6 -1.18 2390 DNK54231 135 -1.14 2385 DNK54231 136 -1.14 2385 DNK54231 137 -1.38 2385 DNK54231 150 -1.18 2386 DNK54231 150 -1.16 2386 DNK54231 150.9 -1.16 2386 DNK54231 156.5 -1.37 2446 64882.02.10 337.26 -1.72 2441 DNK54231	2165	DIN54231 DIN54231	171		-0.85	
2143 NIN54231 350.8 1.93 2247 NIN54231 323 1.50 2255 NIN54231 323 1.50 2272 NIN54231 285 0.91 2280 NIN54231 286 0.91 2281 NIN54231 164.8 R(0.01) 5.24 2283 DIN54231 186.12 -0.62 2310 DIN54231 146 -1.24 2331 DIN54231 146.1 -1.62 2332 DIN54231 146.1 -1.62 23330 DIN54231 142.5 -1.14 2332 DIN54231 150 -1.14 2335 DIN54231 152.0 -1.16 2356 DIN54231 151 -1.17 2365 DIN54231 151 -1.16 2375 DIN54231 156.3 -2.48 2380 DIN54231 156.3 -1.16 2375 DIN54231 156.3 -1.24 2380 DIN54231 156.3 -1.24 2380 <	2172	DIN54231	181		-0.70	
2247 DNN54231 350.8 1.93 2247 DNN54231 202.5 -0.36 2251 DNN54231 202.5 -0.36 2272 DNN54231 261.4 -0.52 2280 DNN54231 125.4 -0.62 2280 DNN54231 126.4 -1.24 2301 DNN54231 186.1 -1.24 2302 DNN54231 186.1 -1.24 2303 DNN54231 185 -1.41 2334 DNN54231 185.0 -1.41 2335 DNN54231 137 -1.42 2336 DNN54231 137 -1.47 2337 DNN54231 137 -1.47 2338 DNN54231 136 -1.47 2339 DNN54231 136.3 -1.47 2340 DNN54231 136.3 -1.47 2351 DNN54231 136.8 -1.38 2360 DNN54231 136.83 -1.38 2375 DNN54231 136.83 -1.38 2440 DNN54231 367.03 2.26 2441 DNN54231 367.5 1.72 2442 DNN54231 367.5 1.72	2184	DIN54231	179		-0.73	
2247 DNN64231 323 1.50 2275 DNN64231 285 0.91 2272 DNN64231 285 0.91 2280 DNN64231 125.4 -1.56 2290 DNN64231 146 -1.24 2310 DNN64231 146.12 -0.62 2310 DNN64231 145 -1.16 2331 DNN64231 149.6 -1.18 2332 DNN64231 149.6 -1.16 2335 DNN64231 150 -1.41 2336 DNN64231 150 -1.41 2335 DNN64231 150 -1.41 2336 DNN64231 150 -1.41 23385 DNN64231 162 -0.99 23370 DNN64231 150 -1.47 23385 DNN64231 150 -1.16 2339 DNN64231 150.9 -1.16 2340 DNN64231 150.9 -1.16 2340 DNN64231 150.9 -1.16 2340 DNN64231 150.9 -1.16 2340 DNN64231 367.0 2.22 2441 DNN64231 37.6 1.72 2442	2201	DIN54231	350.8		1.93	
1227 DNR-104 108 2272 DNR-4231 60.8 R(0.01) 5.24 2280 DNR-4231 125.4 -1.56 2291 DNR-4231 146 -1.24 2301 DNR-4231 146.12 -0.62 2310 DNR-4231 146.12 -1.25 2330 DNR-4231 144.18 -1.27 2330 DNR-4231 135 -1.41 2332 DNR-4231 135.0 -1.41 2333 DNR-4231 135.0 -1.38 2334 DNR-4231 136 -1.47 2335 DNR-4231 136.1 -1.47 2336 DNR-4231 136.83 -1.38 2330 DNR-4231 136.83 -1.38 2340 DNR-4231 36.7535 2.48 2350 DNR-4231 36.7535 2.48 2360 DNR-4231 36.7535 2.48 2375 DNR-4231 36.7535 2.48 2380 DNR-4231 36.75 1.72 2446 6	2247	DIN54231 DIN54231	323		1.50	
2229 DNS4231 407.9 2.81 2290 DNS4231 125.4 R(0.01) 5.24 2290 DNS4231 125.4 R(0.01) 5.24 2301 DNS4231 186.12 -0.62 2310 DNS4231 145 -1.25 2311 DNS4231 144.18 -1.27 2330 DNS4231 150 -1.41 2357 DNS4231 152.0 -1.41 2358 DNS4231 150 -1.41 2365 DNS4231 150 -1.47 2366 DNS4231 150 -1.18 2375 DNS4231 150 -1.18 2380 DNS4231 150 -1.16 2390 DNS4231 156.9 -1.16 2390 DNS4231 156.9 -1.16 2390 DNS4231 156.9 -1.16 2390 DNS4231 136.7.5 2.48 2400 DNS4231 136.6 38 2410 DNS4231 136.6 226 2425 <td>2233</td> <td>DIN54231</td> <td>285</td> <td></td> <td>0.91</td> <td></td>	2233	DIN54231	285		0.91	
2280 DINS4231 125.4 6 2280 DINS4231 125.4 6 2281 DINS4231 186.12 -0.62 2310 DINS4231 145 1.6 2330 DINS4231 144.18 1.27 2330 DINS4231 143.6 1.18 2332 DINS4231 152.0 1.14 2338 DINS4231 150.0 1.6 2339 DINS4231 150.0 1.8 2339 DINS4231 150.0 1.8 2330 DINS4231 150.0 1.8 2330 DINS4231 150.9 1.18 2330 DINS4231 150.9 1.18 2330 DINS4231 150.9 1.18 2340 DINS4231 150.9 1.18 23410 DINS4231 156.9 14 2342 DINS4231 36.673.5 2.22 2442 DINS4231 36.632 .0.12 2445 DINS4231 26.65 .0.12 2445	2272	DIN54231	407.9		2.81	
2295 DINS4231 125.4 -1.56 2301 DINS4231 186.12 -0.62 2311 DINS4231 151 -1.25 23130 DINS4231 151 -1.6 2330 DINS4231 149.6 -1.27 2330 DINS4231 152.0 -1.6 2335 DINS4231 135 -1.41 2336 DINS4231 137 -1.38 23365 DINS4231 137 -1.6 23360 DINS4231 150 -1.14 2339 DINS4231 150 -1.14 2339 DINS4231 150 -1.14 23300 DINS4231 150 -1.14 23300 DINS4231 150 -1.16 23300 DINS4231 150.9 -1.16 23300 DINS4231 156.4 -2.36 2340 DINS4231 36.6 0.23 2451 DINS4231 37.6 -7.2 2452 DINS4231 261.0 1.39 2452 DINS4231	2289	DIN54231	564.8	R(0.01)	5.24	
2245 DINS4231 146 -1.24 2310 DINS4231 145 -1.25 2311 DINS4231 144.18 -1.27 2330 DINS4231 144.18 -1.27 2335 DINS4231 135 -1.14 2335 DINS4231 152.0 -1.14 2336 DINS4231 157 -1.38 2336 DINS4231 150 -1.47 2337 DINS4231 150 -1.14 2338 DINS4231 151 -1.47 2339 DINS4231 152 -0.99 2375 DINS4231 150.9 -1.14 2380 DINS4231 150.9 -1.14 2380 DINS4231 150.9 -1.16 2380 DINS4231 150.9 -1.16 2380 DINS4231 156.50 R(0.01) 5.7 2442 DINS4231 365.602 R(0.01) 5.7 2442 DINS4231 37.10 2.22 -2.36 24445 DINS4231 365.79 -0.29 </td <td>2290</td> <td>DIN54231</td> <td>125.4</td> <td></td> <td>-1.56</td> <td></td>	2290	DIN54231	125.4		-1.56	
2310 DIN4231 145 -1.26 2311 DIN54231 151 -1.16 23130 DIN54231 144.18 -1.27 23300 DIN54231 144.6 -1.81 2330 DIN54231 135 -1.41 2337 DIN54231 137 -1.38 2365 DIN54231 137 -1.38 2365 DIN54231 131 -1.47 2380 DIN54231 150 -1.18 2370 DIN54231 150 -1.18 2386 DIN54231 150 -1.16 2380 DIN54231 150 -1.16 2380 DIN54231 150.9 -1.16 2380 DIN54231 156.83 -1.38 2440 DIN54231 150.9 -1.16 2380 DIN54231 370.0 2.22 24410 DIN54231 370.0 2.22 24420 DIN54231 376.0 1.39 24421 DIN54231 377.0 2.18 24423 DIN54231	2295	DIN54231 DIN54231	146 186 12		-1.24	
2311 DIN54231 141 -1.16 2330 DIN54231 144.18 -1.27 2350 DIN54231 135 -1.14 2362 DIN54231 152.0 -1.14 2363 DIN54231 137 -1.38 2365 DIN54231 131 -1.47 2375 DIN54231 162 -0.99 2375 DIN54231 150 -1.18 2380 DIN54231 154 -1.17 2379 DIN54231 150.9 -1.16 2380 DIN54231 150.9 -1.14 2380 DIN54231 150.9 -1.14 2380 DIN54231 150.9 -1.14 2380 DIN54231 150.9 -1.16 2410 DIN54231 156.9 -1.22 2421 DIN54231 156.9 -1.22 2442 DIN54231 365.02 R(0.01) 5.7 2445 DIN54231 261.0 1.38 2446 DIN54231 261.0 1.32 2447	2310	DIN54231	145		-1.25	
2330 DINS4231 144.18 -1.27 2330 DINS4231 135 -1.18 2335 DINS4231 152.0 -1.14 2338 DINS4231 152.0 -1.14 2338 DINS4231 150.0 -1.56 2336 DINS4231 131 -1.47 2365 DINS4231 160 -1.18 2370 DINS4231 162 -0.99 2375 DINS4231 136.7535 -2.48 2380 DINS4231 154.1 -1.11 2380 DINS4231 156.1 -1.16 2380 DINS4231 156.1 -1.11 2380 DINS4231 156.2 -2.48 2380 DINS4231 156.1 -1.11 2380 DINS4231 36.75.5 -2.48 2380 DINS4231 370 2.22 24410 DINS4231 370 2.22 24452 DINS4231 36.0 1.39 24452 DINS4231 36.6 1.73 24452 DINS4231	2311	DIN54231	151		-1.16	
2350 DINS4231 149.6 -1.18 2357 DINS4231 135 -1.41 2357 DINS4231 125.0 -1.14 2368 DINS4231 137 -1.38 2365 DINS4231 130 -1.41 2369 DINS4231 130 -1.47 2369 DINS4231 150 -1.41 2370 DINS4231 150 -1.47 2370 DINS4231 150 -1.47 2370 DINS4231 150.9 -1.16 2380 DINS4231 150.9 -1.16 2380 DINS4231 136.52 R(0.01) 5.7 2410 DINS4231 366.502 R(0.01) 5.7 2426 DINS4231 366.502 R(0.01) 5.7 2446 6482.02.10 337.8 1.32 2442 DINS4231 366.50 3.71 2443 DINS4231 357.8 -1.02 2448 DINS4231 237.8 -1.02 2545 DINS4231 208.7 -0.27	2330	DIN54231	144.18		-1.27	
2352 DINS4231 133 -1.41 2356 DINS4231 152.00 -1.56 2363 DINS4231 131 -1.47 2369 DINS4231 150 -1.18 2370 DINS4231 150 -1.18 2370 DINS4231 150 -1.18 2371 DINS4231 152 -0.99 2375 DINS4231 154.1 -1.11 2386 DINS4231 154.1 -1.11 2386 DINS4231 156.1 -1.16 2380 DINS4231 156.2 -2.48 2380 DINS4231 156.2 -1.16 2380 DINS4231 156.2 -1.16 2380 DINS4231 36.83 -1.38 24410 DINS4231 370 2.22 2452 DINS4231 37.0 2.22 2462 DINS4231 37.1 2.18 2482 DINS4231 37.6 1.39 2483 DINS4231 2.05 -0.27 2544 DINS4231	2350	DIN54231	149.6		-1.18	
2368 DIN54231 125.0 1.56 2383 DIN54231 137 -1.38 2385 DIN54231 150 -1.18 2386 DIN54231 160 -1.18 2370 DIN54231 131 -1.47 2380 DIN54231 150 -1.16 2375 DIN54231 154.1 -1.11 2380 DIN54231 156.755 2.48 2380 DIN54231 158.83 -1.38 2340 DIN54231 158.83 -1.38 2340 DIN54231 158.75 1.72 2442 DIN54231 366.502 R(0.01) 5.73 2442 DIN54231 37.6524 -2.36 2442 DIN54231 37.610 2.18 2442 DIN54231 367.10 2.18 24431 DIN54231 37.6 1.73 2515 DIN54231 272 0.71 2515 DIN54231 266.50 0.27	2352 2357	DIN54231 DIN54231	135		-1.41	
2363 DIN54231 137 - 1.38 2365 DIN54231 150 - 1.18 2370 DIN54231 162 - 0.99 2375 DIN54231 366.7535 2.48 2380 DIN54231 150.9 - 1.16 2380 DIN54231 156.9 - 1.16 2380 DIN54231 156.9 - 1.16 2380 DIN54231 37.0 2.22 2410 DIN54231 37.6 - 1.72 2425 DIN54231 37.6 2.26 2446 MIS4231 37.6 2.28 2447 DIN54231 37.6 2.28 2448 DIN54231 36.6.02 R0.01 5.57 2448 DIN54231 36.6 1.39 2449 DIN54231 36.6 3.71 2451 DIN54231 36.6 3.71 2452 DIN54231 2.65 3.71 2532 DIN54231 2.65 R0.01) 5.86 2540 DIN54231 2.06	2358	DIN54231	125.00		-1.56	
2365 DIN54231 131 -1.47 2369 DIN54231 162 -0.99 2375 DIN54231 131 -1.47 2379 DIN54231 136.7535 2.48 2380 DIN54231 156.9 -1.16 2380 DIN54231 136.83 -1.38 2410 DIN54231 136.83 -1.38 2410 DIN54231 586.502 R(0.01) 5.57 2442 DIN54231 73.6524 -2.36 2442 DIN54231 73.6524 -2.36 2442 DIN54231 367.10 2.18 2448 DIN54231 367.10 2.18 2448 DIN54231 366.35 3.71 2449 IDN54231 367.9 -1.02 24439 DIN54231 37.6 1.73 2511 DIN54231 25.7 -1.09 2522 DIN54231 26.5 3.71 2532 DIN54231 20.6 -0.21 2543 DIN54231 20.7 -0.22	2363	DIN54231	137		-1.38	
2339 DIN54231 150 -1.18 2370 DIN54231 131 -0.99 2375 DIN54231 131 -1.47 2380 DIN54231 150.9 -1.16 2380 DIN54231 150.9 -1.16 2380 DIN54231 150.9 -1.16 2390 DIN54231 136.83 -1.38 2410 DIN54231 597 R(0.01) 5.77 2446 6482.02.10 337.25 1.72 2442 DIN54231 73.6524 -2.36 2446 DIN54231 316.0 1.39 2448 DIN54231 316.0 1.39 2448 DIN54231 367.10 2.18 24497 IS01373 466.35 3.71 2511 DIN54231 357.8 -1.02 2522 DIN54231 260 -0.16 2532 DIN54231 207 -0.29 2566 DIN54231 206 -0.27 2580 DIN54231 208 -0.28 2644	2365	DIN54231	131		-1.47	
2375 DIN54231 102 -0.39 2375 DIN54231 131 -1.47 2380 DIN54231 156.1 -1.16 2386 DIN54231 150.9 -1.16 2390 DIN54231 136.83 -1.38 2410 DIN54231 136.85 -1.38 2412 DIN54231 597 R(0.01) 5.73 2442 DIN54231 586.50 R(0.01) 5.57 2442 DIN54231 73.6524 -2.36 2442 DIN54231 376.0 2.22 2443 DIN54231 367.10 2.18 2448 DIN54231 367.10 2.18 2499 in house 159.8 -1.02 2491 in Dis4231 375.79 -1.09 2515 DIN54231 155.79 -1.09 2515 DIN54231 272 0.71 2564 DIN54231 205 -0.27 2565 DIN54231 206.0 -0.27 2660	2369	DIN54231 DIN54231	150		-1.18	
2379 DINS4231 396,7535 2.48 2380 DINS4231 154.1 -1.11 2390 DINS4231 150.9 -1.16 2390 DINS4231 136.83 -1.38 2410 DINS4231 136.83 -1.38 2446 64882.02.10 337.25 1.72 2442 DINS4231 586.502 R(0.01) 5.57 2442 DINS4231 73.6524 -2.36 2448 DINS4231 367.10 2.18 2448 DINS4231 316.0 1.39 2448 DINS4231 316.0 1.39 24497 ISO13373 466.35 3.71 2511 DINS4231 357.9 -1.09 2522 DINS4231 265 0.42 2532 DINS4231 265.7 019 2532 DINS4231 265.7 029 2563 DINS4231 207 -0.29 2564 DINS4231 208 027 2560 DINS4231 208 028 <	2370	DIN54231 DIN54231	131		-0.99	
2380 DINS4231 154.1 -1.11 2386 DINS4231 150.9 -1.16 2390 DINS4231 136.83 -1.38 2410 DINS4231 597 R(0.01) 5.73 2446 GH82.02.10 337.25 1.72 2452 DINS4231 366.502 R(0.01) 5.57 2467 DINS4231 73.6524 -2.36 2482 DINS4231 376.57 0.23 2488 DINS4231 316.0 1.39 2492 in house 159.8 -1.02 2493 INS4231 357.9 -1.09 2515 DINS4231 155.79 -1.09 2515 DINS4231 272 0.71 2544 DINS4231 205 -0.29 2567 DINS4231 206 -0.29 2567 DINS4231 208.0 -0.28 2614 CPSD-AN-0048 208 -0.28 2614 DINS4231 219.741 -0.10 2614 DINS4231 219.741 -0.10	2379	DIN54231	386.7535		2.48	
2386 DINS4231 150.9 -1.16 2390 DINS4231 597 R(0.01) 5.73 2446 64B82.02.10 337.25 1.72 2442 DINS4231 586.502 R(0.01) 5.57 2462 DINS4231 370 2.22 2467 DINS4231 370 2.22 2467 DINS4231 241.278 0.23 2488 DINS4231 367.10 2.18 2499 INS4231 366.35 3.71 2493 DINS4231 253 0.42 24949 INS4231 37.8 -1.02 2497 ISO13373 466.35 3.71 2511 DINS4231 155.79 -1.09 2522 DINS4231 216 C -0.16 2525 DINS4231 207 -0.29 -0.21 2566 DINS4231 206 -0.27 -0.29 2667 DINS4231 208.50 -0.27 2580 2640 DINS4231	2380	DIN54231	154.1		-1.11	
2390 DINS4231 136.83 -1.38 2410 DINS4231 597 R(0.01) 5.73 2442 DINS4231 370 2.22 2463 DINS4231 370 2.22 2464 DINS4231 73.6524 -2.36 2482 DINS4231 241.728 0.23 2488 DINS4231 367.10 2.18 2493 INS4231 366.35 3.71 2493 DINS4231 37.8 -1.02 2493 DINS4231 37.8 1.73 2515 DINS4231 37.8 1.73 2515 DINS4231 27.7 0.71 2554 DINS4231 206.50 -0.29 2567 DINS4231 206.50 -0.27 2580 withdrawn, first reported: 685.3 2640 DINS4231 219.741 -0.10 2641 DINS4231 219.741 -0.10 2642 DINS4231 219.741 -0.10 2643 DINS4231 219.741 -0.10 <	2386	DIN54231	150.9		-1.16	
2446 64882.02.10 337.25 1.72 2452 DIN54231 586.502 R(0.01) 5.57 2462 DIN54231 73.6524 -2.36 2488 DIN54231 367.10 2.18 2489 DIN54231 367.10 2.18 2489 DIN54231 367.10 2.18 2492 in house 159.8 -1.02 2493 DIN54231 37.8 1.72 2515 DIN54231 37.8 1.73 2515 DIN54231 155.79 -1.09 2532 DIN54231 272 0.71 2543 DIN54231 272 0.71 2545 DIN54231 206 -0.29 2567 DIN54231 207 -0.29 2560 DIN54231 208.50 -0.27 2604 2604 2614 CPSD-AN-00048 208 -0.28 2649 DIN54231 219.741 -0.48 2649 DIN54231 </td <td>2390</td> <td>DIN54231 DIN54231</td> <td>136.83</td> <td>R(0.01)</td> <td>-1.38</td> <td></td>	2390	DIN54231 DIN54231	136.83	R(0.01)	-1.38	
2452 DIN54231 586.502 R(0.01) 5.57 2462 DIN54231 370 2.22 2467 DIN54231 73.6524 -2.36 2482 DIN54231 367.10 2.18 2488 DIN54231 316.0 1.39 2492 in house 159.8 -1.02 2493 DIN54231 337.8 1.73 2511 DIN54231 337.8 1.73 2515 DIN54231 37.8 1.73 2515 DIN54231 272 0.71 2554 DIN54231 205 -0.27 2567 DIN54231 206 -0.27 2560 W 2602 W 2614 CPSD-AN-00048 208 -0.28 2643 DIN54231 195 -0.48 2649 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2649 DIN54231 257.1 0.48 2649 DIN5423	2446	64B82.02.10	337.25	1((0.01)	1.72	
2462 DIN54231 370 2.22 2467 DIN54231 73.6524 -2.36 2482 DIN54231 367.10 2.18 2488 DIN54231 367.10 1.39 2492 in house 159.8 -1.02 2493 DIN54231 253 0.42 2497 ISO13373 466.35 3.71 2511 DIN54231 337.8 1.73 2515 DIN54231 155.79 -1.09 2532 DIN54231 205 0.71 2554 DIN54231 206 -0.27 2567 DIN54231 207 -0.27 2580 2602 W 2614 CPSD-AN-00048 208 -0.28 2649 DIN54231 195 -0.48 2649 DIN54231 219.71 -0.48 2649 DIN54231 257.1 0.48 2649 DIN54231 267.7 -0.27 3116 DIN54231 2	2452	DIN54231	586.502	R(0.01)	5.57	
2467 DIN54231 73.6524 -2.36 2482 DIN54231 241.278 0.23 2488 DIN54231 367.10 2.18 2499 DIN54231 316.0 1.39 2492 in house 159.8 -1.02 2493 DIN54231 253 0.42 2497 ISO13373 466.35 3.71 2511 DIN54231 337.8 1.73 2515 DIN54231 272 0.71 2553 DIN54231 207 -0.29 2567 DIN54231 206 -0.27 2560 2604 2604 2604 2614 CPSD-AN-0048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2664 DIN54231 257.1 0.48 2668 DIN54231 267.1 0.48 2668	2462	DIN54231	370		2.22	
2488 DIN54231 367.10 2.18 2489 DIN54231 316.0 1.39 2492 in house 159.8 -1.02 2493 DIN54231 253 0.42 2497 ISO13373 466.35 3.71 2515 DIN54231 337.8 1.73 2515 DIN54231 272 0.71 2554 DIN54231 205 R(0.01) 5.86 2563 DIN54231 206 -0.29 2567 DIN54231 206 -0.29 2567 DIN54231 208.50 -0.27 2604 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 257.1 0.48 2666 DIN54231 257.1 0.48 2668 DIN54231 257.1 0.48 2649 DIN54231 257.1 0.48 2649 DIN54231 268.7 -0.27 3117	2467	DIN54231	73.6524		-2.36	
2489DINS4231316.01.392492in house159.8-1.022493DINS42312530.422497ISO13373466.353.712511DINS4231337.81.732515DINS4231155.79-1.092532DINS42312720.712554DINS4231216C2563DINS4231207-0.292567DINS4231207-0.292567DINS4231200-0.27260226042614CPSD-AN-00048208-0.282640DINS4231195-0.482643DINS4231257.10.483100DINS42313391.753117DINS4231208.7-0.273146DINS42314253.073150DINS42314253.073151DINS423113.6-1.74	2462 2488	DIN54231 DIN54231	367 10		0.23 2.18	
2492in house159.8-1.022493DIN542312530.422497ISO13373466.353.712511DIN54231337.81.732515DIN54231155.79-1.092532DIN54231605R(0.01)5.862563DIN54231216C-0.162564DIN54231207-0.292567DIN54231208.50-0.2725802602W2614CPSD-AN-00048208-0.282640DIN54231219.741-0.102643DIN54231257.10.482668DIN54231257.10.483100DIN54231208.7-0.273146DIN54231258.70.283150DIN54231358R(0.01)3151DIN5423113.6-1.74	2489	DIN54231	316.0		1.39	
2493 DIN54231 253 0.42 2497 ISO13373 466.35 3.71 2511 DIN54231 337.8 1.73 2515 DIN54231 155.79 -1.09 2532 DIN54231 605 R(0.01) 5.86 2563 DIN54231 216 C -0.16 2566 DIN54231 207 -0.29 2567 DIN54231 208.50 -0.27 2580 W 2602 W 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 219.741 -0.10 2644 DIN54231 257.1 0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 257.1 0.48 3100 DIN54231 268.7 -0.27 3146 DIN54231 268.7 -0.27 3146 DIN54231 257.1 0.48 3100	2492	in house	159.8		-1.02	
249/ ISU13373 460.35 3.71 2511 DIN54231 337.8 1.73 2515 DIN54231 155.79 -1.09 2532 DIN54231 272 0.71 2554 DIN54231 207 -0.29 2566 DIN54231 207 -0.29 2567 DIN54231 208.50 -0.27 2602 W 2604 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2644 DIN54231 257.1 0.48 2668 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 31146 DIN54231 208.7 -0.27 3150 DIN54231 425 3.07 3150 DIN54231 136 -1.74	2493	DIN54231	253		0.42	
2511 DIN54231 155.79 -1.09 2552 DIN54231 272 0.71 2554 DIN54231 605 R(0.01) 5.86 2563 DIN54231 216 C -0.16 2566 DIN54231 207 -0.29 2567 DIN54231 208.50 -0.27 2580 withdrawn, first reported: 685.3 2602 W 2604 2604 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 195 -0.48 2643 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 208.7 -0.27 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151	2497	ISU13373 DIN54231	466.35		3.71	
2532 DIN54231 272 0.71 2554 DIN54231 605 R(0.01) 5.86 2563 DIN54231 216 C -0.16 2566 DIN54231 207 -0.29 2567 DIN54231 208.50 -0.27 2580 2602 W 2604 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2649 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2515	DIN54231	155.79		-1.09	
2554 DIN54231 605 R(0.01) 5.86 2563 DIN54231 216 C -0.16 2566 DIN54231 207 -0.29 2567 DIN54231 208.50 -0.27 2580 2602 W 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 219.741 -0.10 2643 DIN54231 257.1 0.48 2668 DIN54231 339 1.75 3110 DIN54231 208.7 -0.27 3146 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2532	DIN54231	272		0.71	
2563 DIN54231 216 C -0.16 first reported: 21.6 2566 DIN54231 207 -0.29 2567 DIN54231 208.50 -0.27 2580 2602 withdrawn, first reported: 685.3 2604 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 2668 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2554	DIN54231	605	R(0.01)	5.86	
2567 DIN54231 207 -0.23 2567 DIN54231 208.50 2600 withdrawn, first reported: 685.3 2604 withdrawn, first reported: 685.3 2614 CPSD-AN-00048 208 -0.28 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 2668 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2563	DIN54231	216	С	-0.16	first reported: 21.6
2580 withdrawn, first reported: 685.3 2602 W 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 2668 DIN54231 208.7 -0.27 3117 DIN54231 208.7 -0.27 3146 DIN54231 585 R(0.01) 5.55 3151 DIN54231 13.6	2567	DIN54231	207		-0.29	
2602 W withdrawn, first reported: 685.3 2604 withdrawn, first reported: 685.3 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 478 3.89 2649 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2580	2.1.10.1201				
2604 2614 CPSD-AN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 478 3.89 2649 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 585 $R(0.01)$ 5.55 3151 DIN54231 113.6 -1.74 -1.74	2602			W		withdrawn, first reported: 685.3
2014 CFSD-AIN-00048 208 -0.28 2640 DIN54231 219.741 -0.10 2643 DIN54231 478 3.89 2649 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2604					
2643 DIN54231 478 3.89 2649 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2614 2640	CPSD-AN-00048 DIN54231	∠∪ŏ 219 741		-0.28	
2649 DIN54231 195 -0.48 2668 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2643	DIN54231	478		3.89	
2668 DIN54231 257.1 0.48 3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	2649	DIN54231	195		-0.48	
3100 DIN54231 339 1.75 3117 DIN54231 208.7 -0.27 3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6	2668	DIN54231	257.1		0.48	
3146 DIN54231 425 3.07 3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	3100 3117	DIN54231 DIN54231	১১৭ २०८ २		1./5 _0.27	
3150 DIN54231 585 R(0.01) 5.55 3151 DIN54231 113.6 -1.74	3146	DIN54231	425		3.07	
3151 DIN54231 113.6 -1.74	3150	DIN54231	585	R(0.01)	5.55	
	3151	DIN54231	113.6		-1.74	
3153 DIN54231 248 0.34 3154 DIN54231 188.98 -0.57	3153 3154	DIN54231 DIN54231	248 188 98		0.34	

3172 3176 3190 3197 3210 3214 3218 3220 3228 3237 3242	DIN54231 DIN54231 DIN54231 DIN54231 in house DIN54231 DIN54231 DIN54231 DIN54231 DIN54231 DIN54231 DIN54231 DIN54231	152 350.7 159 224.2 310.94 1309 539.7 185 201.0 165 367.6694 215	R(0.01) R(0.01)	-1.14 1.93 -1.04 -0.03 1.31 16.74 4.85 -0.63 -0.39 -0.94 2.19 -0.17
3248	normality n outliers mean (n) st.dev. (n) R(calc.) R(DIN54231:05)	0K 71 9 226.076 95.1023 266.287 181.168		-1.02

Determination of Disperse Red 17 (CASno.3179-89-3) in sample #15023; results in mg/kg

lab	method	value	mark	z(targ)	remarks
213					
362	in house	981	R(0.01)	25.04	
551	BINE (SS)				
623	DIN54231	109.3		-0.31	
2108	DIN54231 DIN54231	317.4	R(0.05)	-0.30 5.74	
2113	in house	160 74	IX(0.03)	1 18	
2132	DIN54231	327.5	R(0.05)	6.03	
2137	DIN54231	182.1	()	1.80	
2138	DIN54231	265.52	R(0.05)	4.23	
2139	DIN54231	78		-1.22	
2165	DIN54231	153		0.96	
2172	DIN54231 DIN54231	145		0.72	
2201	DIN54231	111.6		-0.25	
2247	DIN54231	83		-1.08	
2255	DIN54231	142.6		0.65	
2271	DIN54231	128		0.23	
2272	DIN54231	103.6		-0.48	
2209	DIN04231 DIN54231	115		-0.15	
2295	DIN54231	67		-0.03	
2301	DIN54231	207.64		2.55	
2310	DIN54231	106		-0.41	
2311	DIN54231	105		-0.44	
2330	DIN54231	110.30		-0.29	
2350	DIN54231 DIN54231	143.2		0.67	
2352	DIN54231	104		-0.47	
2358	DIN54231	98.74		-0.62	
2363	DIN54231	102		-0.53	
2365	DIN54231	103		-0.50	
2369	DIN54231	108		-0.35	
2370	DIN54231	112		-0.24	
2375	DIN54231 DIN54231	55 9079		-0.03	
2380	DIN54231	115.0		-0.15	
2386	DIN54231	121.4		0.04	
2390	DIN54231	150.51		0.88	
2410	DIN54231	132		0.35	
2446	64B82.02.10	80.10		-1.16	
2452	DIN54231 DIN54231	106.123		-0.41	
2402	DIN54231	48 6378		-2.08	
2482	DIN54231	122.906		0.08	
2488	DIN54231	131.96		0.34	
2489	DIN54231	90.4		-0.86	
2492	in house	80.2		-1.16	
2493	DIN54231	117		-0.09	
2497	DIN54231	73.30 293.0	R(0.05)	-1.30 5.03	
2515	DIN54231	198.81	11(0.00)	2.29	
2532	DIN54231	95		-0.73	
2554	DIN54231	127		0.20	
2563	DIN54231	70.35	C D(0.05)	-1.45	first reported:7.04
2566	DIN54231	255	R(0.05)	3.92	
2580	DIN04231	140.01			
2602	DIN54231	161.8		1.21	
2604					
2614	CPSD-AN-00048	253	R(0.05)	3.87	
2640	DIN54231	286.2505	R(0.05)	4.83	
2643	DIN54231 DIN54231	0∠ 208		-1.11 2 56	
2668	DIN54231	138.8		2.50	
3100	DIN54231	102		-0.53	
3117	DIN54231	95.7		-0.71	
3146	DIN54231	97.1		-0.67	
3150	DIN54231	118		-0.06	
3151	DIN34231 DIN54231	260 260	R(0.05)	1.18	
3154	DIN54231	236.46	13(0.05)	3.38	
3172	DIN54231	126		0.17	

3176 3190 3197 3199 3210 3214 3218 3220 3228	DIN54231 DIN54231 DIN54231 in house DIN54231 DIN54231 DIN54231 DIN54231 DIN54231	182.7 85.5 135.0 373.025 263 101.4 100 35.8 149	R(0.05) R(0.05)	1.82 -1.01 0.43 7.36 4.16 -0.54 -0.58 -2.45 0.84
3237	DIN54231	96.0025		-0.70
3242	DIN54231	119.5		-0.02
3248	DIN54231	235		3.34
	normality n outliers mean (n) st.dev. (n) R(calc.) R(DIN54231:05)	suspect 70 11 120.109 39.8473 111.572 96.250		

Determination of Disperse Blue 35 (CASno.12222-75-2) in sample #15024; results in mg/kg

lah	mothed	value	mork	7(+0+-)	romarke
1 ab 213	method	value	mark	z(targ)	remarks
362	in house	<15.0			
551					
623	DIN54231	n.d.			
2108	DIN54231	n.d.	P(0.01)		
2110	DINJ4231		K(0.01)		
2132	DIN54231	22.5		-0.17	
2137	DIN54231	<5		<-2.75	false negative test result?
2138	DINE 4004				
2139	DIN54231 DIN54231	26		0.35	
2103	DIN54231	n.d.			
2184	DIN54231	21		-0.39	
2201	DIN54231	18.9		-0.70	
2247	DIN54231	n.d.		0.17	
2255	DIN54231 DIN54231	22.5		-0.17	
2272					
2289	DIN54231	13.9		-1.44	
2290	DIN54231	<15			
2295					
2310	DIN54231	n.d.			
2311	DIN54231	n.d.			
2330	DIN54231	n.d.			
2350	DIN54231	 n d			
2357	DIN54231	n.d.			
2358	DIN54231	n.d.			
2363	DIN54231	<15			
2365	DIN54231 DIN54231	<15 n d			
2309	DIN54231 DIN54231	n.d.			
2375					
2379	DIN54231	17.1760		-0.96	
2380	DIN54231	n.d.	P(0.01)	0.16	
2300	D11N34231		K(0.01)	9.10	
2410	DIN54231	49		3.75	
2446	64B82.02.10	61.53	R(0.01)	5.60	
2452	DINE4224				
2462 2467	DIN54231 DIN54231	n.a. n d			
2482	DIN54231	24.904		0.19	
2488	DIN54231	36.41		1.89	
2489	to have a				
2492 2493	IN NOUSE	17.4 25.1		-0.92	
2497	Dirto-201				
2511	DIN54231	20.8		-0.42	
2515	DIN54231	<15 n d			
2032 2554	DIN54231 DIN54231	n.d. 129	R(0.01)	15 57	
2563	DIN54231	19.39	C	-0.63	first reported: 1.94
2566	DIN54231	n.d.			
2567	DIN54231	21.5		-0.32	
2580	DIN54231	 124 8	R(0.01)	14 95	
2602	64LFGB82.02.10	n.d.	1((0.01)		
2614					
2640	DIN54231	13.9433		-1.43	
2643	DIN54231 DIN54231	n.d. 30		0.04	
2668	DIN54231	n.d.			
3100	DIN54231	16		-1.13	
3117	DIN54231	27.5	0	0.57	first son attack in d
3146 3150	DIN54231	<20	C		TIRST REPORTED: n.d
3151					
3153	DIN54231	<20			
3154	DINE			 	
3172	DIN54231	33		1.38	

3176	DIN54231	2.1	R(0.05)	-3.18
3190	DIN54231	16.5		-1.06
3197	DIN54231	22.6		-0.15
3199	in house	<15		
3210				
3214	DIN54231	14.1		-1.41
3218				
3220	DIN54231	27.0		0.50
3228	DIN54231	24		0.05
3237	DIN54231	27.3596		0.55
3242	DIN54231	n.d.		
3248	DIN54231	27		0.50
	normality	ОК		
	n	29		
	outliers	6		
	mean (n)	23.637		
	st.dev. (n)	7.4414		
	R(calc.)	20.836		
	R(DIN54231:05)	18.942		
	· /			

Determination of Disperse Red 11 (CASno.2872-48-2) in sample #15024; results in mg/kg

lah	method	value	mark	z(targ)	remarks
213	method		IIIdi K	2(tary)	Telliar NS
362	in house	437	R(0.01)	48.70	
551 623	DIN5/231	 75 7	P(0.01)	 5 55	
2108	DIN54231	19.9	K(0.01)	-1.12	
2115	DIN54231	25.1		-0.50	
2129	in house	56.59	-	3.26	
2132	DIN54231	20.7	С	-1.02	first reported: 258.4
2137	DIN54231 DIN54231	30.9 25.52		0.20	
2139	DIN54231	22		-0.87	
2165	DIN54231	48		2.24	
2172	DIN54231	20.1		-1.09	
2184	DIN54231	51		2.60	
2201	DIN54231 DIN54231	21.3		-0.95	
2255	DIN54231	41.8		1.50	
2271	DIN54231	35		0.69	
2272	DIN54231	21.1	С	-0.97	first reported under disperse red 1
2289	DIN54231 DIN54231	25.5 17.9		-0.45	
2295	DIN54231	11		-2.18	
2301	DIN54231	24.13		-0.61	
2310	DIN54231	76.5	R(0.01)	5.64	
2311	DIN54231	80.8	R(0.01)	6.16 5.11	
2350	DIN54231	101.3	R(0.01)	8.60	
2352	DIN54231	88.2	R(0.01)	7.04	
2357	DIN54231	90.0	R(0.01)	7.26	
2358	DIN54231	84.92	R(0.01)	6.65	
2365	DIN54231 DIN54231	80 88	R(0.01) R(0.01)	6.06 7.02	
2369	DIN54231	90	R(0.01)	7.26	
2370	DIN54231	78.5	R(0.01)	5.88	
2375	DIN54231	75.8	R(0.01)	5.56	
2379	DIN54231	40.7968	P(0.01)	1.38	
2386	DIN54231	<15	K(0.01)		
2390	DIN54231	82.10	R(0.01)	6.31	
2410	DIN54231	40		1.28	
2446	64B82.02.10	16.31		-1.55	
2452 2462	DIN54231 DIN54231	35.646 38		0.76	
2467	DIN54231	20.1193		-1.09	
2482	DIN54231	16.079		-1.57	
2488	DIN54231	18.19		-1.32	
2489	DIN54231	30.0		0.09	
2492	DIN54231	152	R(0.01)	14.66	
2497	ISO13373	29.68	· · ·	0.05	
2511	DIN54231	277.7	R(0.01)	29.67	
2515	DIN54231	24.29		-0.59	
2552	DIN54231	31		0.03	
2563	DIN54231	17.61	С	-1.39	first reported: 1.76
2566	DIN54231	25.65		-0.43	
2567	DIN54231	29.12		-0.02	
2580	DIN54231	28.4		-0.10	
2604	2.1.10.1201				
2614	CPSD-AN-00048	28		-0.15	
2640	DIN54231	44.699		1.84	
∠043 2649	DIN54231 DIN54231	∠∠ 50		-0.87 2.48	
2668	DIN54231	31.72		0.29	
3100	DIN54231	26		-0.39	
3117	DIN54231	17.8		-1.37	
3146	DIN54231 DIN54231	24.1 24.2	C	-0.62	first reported:242
3151	DIN54231	24.2 18.0	U	-1.34	
3153	DIN54231	28.2		-0.13	
3154	DIN54231	24.43	B /	-0.58	
3172	DIN54231	122	R(0.01)	11.08	

3176	DIN54231	4.3		-2.98
3190	DIN54231	23.9		-0.64
3197	DIN54231	75.6	R(0.01)	5.54
3199	in house	38.5973		1.12
3210	DIN54231	53.7		2.92
3214	DIN54231	26.4		-0.34
3218	DIN54231	26.7		-0.31
3220	DIN54231	n.d.		
3228	DIN54231	50		2.48
3237	DIN54231	37.6504		1.00
3242	DIN54231	28.1		-0.14
3248	DIN54231	65		4.27
	normality	OK		
	normality	50		
	outlioro	20		
		20		
	mean (n)	29.255		
	st.dev. (n)	11.9639		
	R(calc.)	33.499		
	R(DIN54231:05)	23.444		

Summary of all other reported Disperse dyes in samples #15023; results in mg/kg

Lab Other reported Disperse Dyes on #15024

--- none

Summary of all other reported Disperse dyes in samples #15024; results in mg/kg

 Lab
 Other reported Disperse Dyes on #15024

 2386
 Disperse Red 1 = 28.3 mg/kg; possibly misidentified the Disperse Red 11 peak; when 28.3 m/kg Disperse Red 11 z = -0.11

Summary of reported analytical details

Lab	Mass in g.	Extraction solvent	Temp of ultrasonic bath in °C	Extraction time	Remarks
213					
362	1.0	15 ml. methanol	70 °C	30	
551		,			
623	1	15 ml methanol	70 °C	30	
2108	0.5	7.5 ml. methanol	70 °C	30	
2115	0.5	7.5 ml, methanol	70 °C	10	
2129	0.5	7.5 ml, methanol	70 °C	30.0	
2132	0.5	7.5 ml. methanol	70 °C	30	
2137	0.1-0.5	5-10 ml. methanol	70 °C	30	
2138	0.5000	7.5 ml. methanol	70 °C	30	
2139	0.5	10 ml. methanol	70 °C	30	
2165	0.5	7.5 ml. methanol	70 °C	30	
2172	0.5	7.5 ml. methanol	70 °C	30	
2184	0.5	7.5 ml. methanol	70 °C	30	
2201	0.5	7.5 ml. methanol	70 °C	30	
2247	0.5039/0.3692	7.5 ml. methanol	70 °C	30	
2255	0.5	7.5 ml. methanol	70 °C	30	
2271	0.5	7.5 ml. methanol	70 °C	30	
2272	0.5	7.5 ml. methanol	70 °C	30	
2289	0.5	7.5 ml. methanol	70 °C	30	
2290	0.5	7.5 ml. methanol	70 °C	30	
2295	0.5	7.5 ml. methanol	70 °C	30	
2301	0.5005	7.5 ml. methanol	70 °C	30	
2310	1	15 ml, methanol	70 °C	30	
2311	1.0	15 ml, methanol	70 °C	30	
2330	0.5	7.5 ml, methanol	70 °C	30	
2350	1.0	15 ml, methanol	70 °C	30	
2352	1	15 ml, methanol	70 °C	30	
2357	0.5	7.5 ml, methanol	70 °C	30	
2358	1.0	15 ml, methanol	70 °C	30	
2363	1	15 ml, methanol	70 °C	30	
2365	0.5	7.5 ml, methanol	70 °C	30	
2369	1.0	15 ml, methanol	70 ℃	30	
2370	0.5	7.5 ml, methanol	70 ℃	30	
2375	0.3	5 ml, methanol	70 ℃	30	
2379	1	15 ml, methanol	70 ℃	30	
2380	1.0	15 ml, methanol	70 ℃	30	
2386	0.5	15 ml, methanol	70 ℃	30	
2390	1	15 ml, methanol	70 ℃	30	
2410	0.5	7.5 ml, methanol	70 ℃	30	
2446	0.5	7.5 ml, methanol	70 ℃	30	
2452	0.5	7.5 ml, methanol	70 ℃	30	
2462	0.5	7.5 ml, methanol	70 °C	30	
2467	0.5022/0.5009	7.5 ml, methanol	70 °C	30	
2482	0.5	7.5 ml, methanol	70 °C	30	
2488	0.5	7.5 ml, methanol	70 °C	30	
2489	0.5001	7.5 ml. methanol	70 °C	30	

Lab	Mass in g.	Extraction solvent	Temp of ultrasonic bath in °C	Extraction time in min	Remarks
2492	0.5	7.5 ml, methanol	70 °C	30	
2493	0.1	3 ml, methanol	70 °C	30	
2497	0.5	pyridine/water 1:1	100 °C	35	
2511	0.5	7.5 ml. methanol	70 °C	30	
2515					
2532	0.5	7.5 ml methanol	70 °C	30	
2554	0.5	7.5 ml methanol	70 + °C	30	
2563	0.5	7.5 ml, methanol	70 °C	30	
2566	0.5	7.5 ml, methanol	70 °C	30	
2500	0.5	7.5 ml, methanol	70 °C	30	
2507	0.5		70 C	30	
2580	1/0.5	20 ml, 100% ethanol	25 °C	15	
2602	0.5	7.5 ml, methanol	70 °C	30	
2604	0.5	7.5 ml, methanol	70 °C	30	
2014	0.5015	7.5 ml, methanol	70°C	30	
2040	0.5	7.5 ml, methanol	70°C	30	
2043	0.5045	7.5 ml, methanol	70°C	30	
2668	0.5	7.5 ml, methanol	70 °C	30	
3100	0.5000	7.5 ml, methanol	70 °C	30	
3117	0.5	7.5 ml, methanol	70 °C	30	
3146	0.5	7.5 ml, methanol	70 °C	30	
3150	0.5	7.5 ml, methanol	70 °C	30	
3151	0.5	7.5 ml, methanol	70 °C	30	
3153	0.5	7.5 ml, methanol	70 °C	30	
3154	0.4	7.5 ml, methanol	70 °C	30	
3172					
3176	0.5	7.5 ml, methanol	70 °C	30	
3190	0.5	7.5 ml, methanol	70 °C	30	
3197	0.5	7.5 ml, methanol	70 °C	30	
3199	0.5023/0.5027	7.5 ml, methanol	70 °C	30	
3210	0.500	7.5 ml, methanol	70 °C	2	
3214	0.3	4.5 ml, methanol	70 °C	30	
3218	0.5	7.5 ml, methanol	70°C	30	
3220	0.5	7.5 ml, methanol	70 °C	30	
3228	1.00	15 ml methanol	70 °C	30	
3237	0.5	7.5 ml methanol	70 °C	30	
3248	0.5003	7.5 ml, methanol	70 °C	30	

Number of participants per country

3 labs in BANGLADESH 1 lab in BRAZIL 1 lab in BULGARIA 2 labs in CAMBODIA 1 lab in FRANCE 13 labs in GERMANY 6 labs in HONG KONG 1 lab in HUNGARY 10 labs in INDIA 2 labs in INDONESIA 3 labs in ITALY 6 labs in KOREA 1 lab in MOROCCO 18 labs in P.R. of CHINA 1 lab in PAKISTAN 1 lab in ROMANIA 2 labs in TAIWAN R.O.C. 1 lab in THAILAND 2 labs in TUNISIA 6 labs in TURKEY 1 lab in U.S.A. 1 lab in UNITED KINGDOM 2 labs in VIETNAM

Abbreviations:

- C = final result after checking of first reported suspect result
- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- R(0.01) = outlier in Rosner's outlier test
- R(0.05) = straggler in Rosner's outlier test
- n.e. = not evaluated
- n.d. = not detected

Literature:

- 1 DIN 54231:2004
- 2 DIN 54231:2005
- 3 iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation, April 2014
- 4 XP G 08-014:97
- 5 P.L. Davies, Fr Z. Anal. Chem, <u>351</u>, 513, (1988)
- 6 W.J. Conover, Practical; Nonparametric Statistics, J. Wiley&Sons, NY, p.302, (1971)
- 7 ISO 5725, (1986)
- 8 ISO 5725, parts 1-6, (1994)
- 9 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 10 G. Rohm, J. Bohnen & H. Kruessmann, GIT Labor-Fachzeitschrift, p 1080, <u>11</u>, (1997)
- 11 Kazumi Sasaki, Mari Sakai, Kazuma Matusita, Yoko Masuda and Koremaro Sato, Chemical Structure Analysis for Azo Type Disperse Dyes by Mass Spectroscopy and Detection of Dyestuff in Textile Products Causing Allergic Contact Dermatitis, BUNSEKI KAGAKU, Vol. 57 (2008), No. 10 pp.833-850
- 12 D. Balasubramanian and K.J. Janakiraman, Asian Textile Journal, p 51-57, March 2004
- 13 Öko-tex Std.100 edition 01/2012, available via http://www.oeko-tex.com/
- 14 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 15 G. Rohm, J. Bohnen & H. Kruessmann, GIT Labor-Fachzeitschrift, p 1080, <u>11</u>, (1997)
- 16 Analytical Methods Committee Technical Brief, No4 January 2001
- 17 The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M. Thompson. (see <u>www.rsc.org/suppdata/an/b2/b205600n/</u>)
- 18 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), pp. 165-172, (1983)