Results of Proficiency Test Nickel Release May 2014

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Author:ing. C.M. Nijssen-WesterCorrectors:ing. R.J. Starink & ing. N. BoelhouwerReport:iis14V03

July 2014

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	. 5
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER SAMPLE	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10

Appendices:

1.	Data and statistical results	11
2.	Analytical details	15
3.	Test method procedure details	17
4.	Number of participants per country	20
5	Abbreviations and literature	21

1 INTRODUCTION

Nickel has always been used in various applications, as a pure metal, as a plated substance on another metal or as an alloy. Nickel applications usually do not give problems, but when nickel comes into prolonged and direct contact with the human skin, sensitization can occur. When a person becomes sensitive to nickel, even the smallest amounts can provoke an allergic reaction. By this, nickel is the most frequent cause of contact allergy in Europe. Both the contact itself (sometimes enhanced by damaged skin) and skin conditions as sweat can cause the body to be exposed by nickel. In order to decrease the amount of people that become sensitized, nickel containing items that are used in prolonged human contact are tested for nickel release. These products involve products like jewellery in piercings (ear rings), other jewellery, watches or clothes fasteners, such as buttons and belts.

On request of several participants, the Institute of Interlaboratory Studies decided to organise an interlaboratory study for the determination of nickel release in the 2013-2014 PT program. In the interlaboratory study of May 2014, 112 laboratories from 26 different countries have participated (see appendix 4). In this report, the results of the 2014 proficiency test are presented and discussed. This report is also electronically available through the iis internet site <u>www.iisnl.com</u>.

2 SET UP

The Institute for Interlaboratory Studies in Spijkenisse was the organizer of this proficiency test. It was decided to send 2 different samples (labelled #14075 and #14076), both positive on nickel release. The analyses for fit-for-use and for homogeneity testing were subcontracted.

Participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation. Also an inventory was made of the analytical details of the used test method, by means of a questionnaire, which was included in the report form.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC 17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on a regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed during the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3).

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

Two samples were used in this proficiency test, both positive on nickel release.

The first sample consisted of square metal pieces (#14075), which were purchased from a local supplier. Eight stratified randomly selected samples were tested using EN1811:2011 to check the homogeneity of the batch.

The dimensions of each sample were approximately (I x w x h): 1.000 x 1.015 x 0.210 cm.

The second batch of samples of an artificial alloy of copper and nickel was prepared and tested for homogeneity by Mrs. Xu FeiFei of the Zhejiang Academy of Science and Technology for Inspection and Quarantine, located in Zhejiang District, P. R. of China. This batch consisted of thin circular metal disks (#14076). Ten stratified randomly selected samples were tested using EN1811:2011 to check the homogeneity of the batch. The dimensions of each disk were approximately: a diameter of 1.94 cm and a thickness of 0.12 cm.

Nickel release	in #14075 (µg/cm²/week)	in #14076 (µg/cm²/week)
sample 1	0.440	15.237
sample 2	0.491	14.963
sample 3	0.529	14.607
sample 4	0.512	16.700
sample 5	0.511	15.077
sample 6	0.403	14.200
sample 7	0.472	15.770
sample 8	0.511	15.677
sample 9		13.343
sample 10		14.337

The test results of the homogeneity tests are shown in table 1.

table 1: homogeneity test results of samples #14075 and #14076

From the above test results, the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibility in agreement with the procedure of ISO13528, Annex B2, in the next table:

Nickel release	in #14075 (µg/cm²/week)	in #14076 (µg/cm²/week)		
r (observed)	0.0432	0.9418		
reference method	EN1811:2001	EN1811:2001		
0.3 x R (reference method)	0.0483	1.4976		

table 2: evaluation of the repeatability of samples #14075 and #14076

The repeatabilities of the results of the homogeneity tests for nickel release of sample #14075 and sample #14076 were in agreement with 0.3 times the reproducibility mentioned in the reference method EN1811:2011. Therefore, homogeneity of the subsamples was assumed for both sample batches.

Three plates of sample #14075 and one plate of sample #14076 were sent to each of the participating laboratories on May 14, 2014.

2.5 ANALYSES

The participants were requested to determine the nickel release of two different materials, applying the analysis procedure that is routinely used in the laboratory. To get comparable results reported, a detailed report form was sent together with the samples. The report form included a questionnaire about the test performance, in order to identify, if possible, analytical details that might have influence on the results of the test. Also a letter of instructions was sent with the samples.

3 RESULTS

During the four weeks after sample despatch, the test results of the individual laboratories were gathered. The original data are tabulated in the appendices of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder fax was sent to those laboratories that had not yet reported. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected data are placed under 'Remarks' in the result tables in appendix 1. A list of abbreviations used in the tables can be found in appendix 5.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of April 2014 (iis-protocol, version 3.3) For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

According to ISO 5725 (1986 and 1994, lit. 7 and 8) the original results per determination were submitted subsequently to Dixon's, Grubbs' and Rosner outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner General ESD test (ref. 13). Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner General ESD test (ref. 13). Stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 5, no 11). Also a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This target standard deviation was calculated from the literature reproducibility by division with 2.8.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z_(target)-scores were calculated according to:

z_(target) = (individual result – average of proficiency test) / target standard deviation

The $z_{(target)}$ -scores are listed in the result tables in appendix 1.

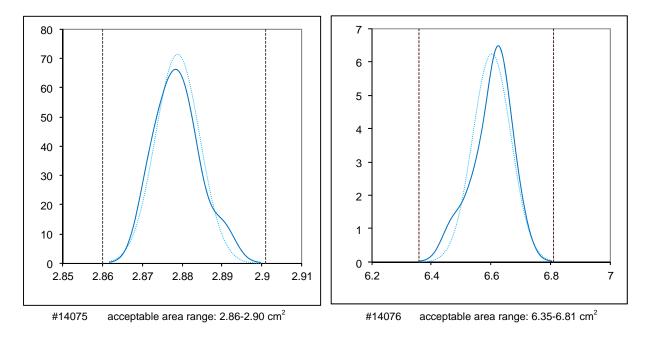
Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. The usual interpretation of z-scores is as follows:

 $\begin{aligned} |z| < 1 \text{ good} \\ 1 < |z| < 2 \text{ satisfactory} \\ 2 < |z| < 3 \text{ questionable} \\ 3 < |z| \qquad \text{unsatisfactory} \end{aligned}$

4 EVALUATION

During the execution of this proficiency test no significant problems were encountered. From the 112 participants, 22 participants reported results after the deadline for reporting and one participant did not report any test results at all. Finally, the 111 reporting laboratories submitted 222 numerical results. Observed were 4 outlying results, which is 1.8%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.


The reproducibility used in this PT report was taken from Annex B of the test method EN1811:2011. It states: the relative method reproducibility in this ILC was 33.3%.

4.1 ANALYTICAL AND METHOD DETAILS FROM THE REPORT FORM QUESTIONNAIRE

All data involved in this paragraph has been summarized in Appendix 2 and 3. On the report form the test results of the various analytical steps could be reported, like the initial volume used of the release solution, the area used and the nickel concentration in the release solution after one week. Unfortunately, the final volume of the test solution (or the release solution diluted with dilute nitric acid before measurement) was not requested. Also included in the report form was a questionnaire about the performance of the method.

Analytical result: Calculation of surface area:

Ten random samples of the batch were measured to determine the average area of the plates. These values were plotted as a normal distribution. From this normal distribution curve, limits could be determined as to the area value that would belong to the normal distributions (see figures below).

The average surface area for sample #14075 is 2.88 ± 0.02 cm² and for sample #14076 it is 6.60 ± 0.20 cm².

A large part of the laboratories did not report an area within the limits mentioned above. For sample #14075 around 80% reported an area outside these limits. Around around 25% of the participants reported an area of 2.8 cm², which would be the area if the plates were measured with a ruler instead of a sliding calliper: $1 \times 1 \times 0.2$ cm.

For sample #14076 around 20% reported an area outside of the limits for this sample.

For both samples some participants found a significantly higher area than iis calculated. Also some participants reported a smaller value, this could be due to a wrong measurement or calculation, but the method also allows the use of wax or lacquer to decrease the area exposed to the sweat solution. Some laboratories might have done this.

iis statistically evaluated the values of the area, reported by the participants. Using the standard deviation and average, a relative standard deviation (RSD) could be calculated. The RSD_{area} is 9% for sample #14075 and the RSD_{area} is 10% for sample #14076. This means that the reported values for area show a significant spread.

From the 2014 PT results, the relative standard deviation for nickel release could be calculated. The $RSD_{nickel \ release}$ is 27% for #14075 and the $RSD_{nickel \ release}$ is 31% for #14076. As these figures show, one third of the spread in nickel release may be caused by the value of the area. Since the area is used to determine the nickel release, it is of the utmost importance that this is measured and calculated correctly.

Analytical result: Volume of test solution (initial):

The method of EN1811:2011 prescribes that the initial test solution used should be 1 ml/cm² surface area. Since only one volume of test solution was requested on the report form, the volumes reported by the participants may be the initial or the final volumes. Still it appears that some of the participants may have used a higher ratio than 1. This may also be a cause for a higher spread in the nickel release test results.

Analytical result: Final volume of test solution:

After the sample has been stored in the release solution for a week, the sample is taken out and the solution is diluted with nitric acid solution. The volume of this step was not requested on the report form, but it could be calculated for most participants by iis, using the other test results from the report form. The calculated dilution volumes showed a lot of variation, from 10 or 25 ml to 1000 or 5000 ml. A very high dilution of the test solution may introduce extra spread on the nickel release result. The measurement may become more difficult if a lower concentration is diluted with a high volume.

Method detail: pre-treatment of vessel:

The vessel, used for leaving the sample in the sweat solution for a week, should be pretreated with dilute nitric acid for 4 hrs. This is done to remove any nickel still present from an earlier test. About half of the participants reported to have done this pre-treatment. Some stored the vessels in dilute nitric acid. Some only flushed the vessel or used distilled water, soap or sweat solution to clean it. When no pre-treatment is used, there will be a risk that the test result for nickel release will be higher.

Method detail: sample degreasing:

The majority of the participants reported to have degreased the sample with a mild soap solution.

Method detail: composition of the sweat solution:

Three participants used ammonia to increase the pH value of the sweat solution instead of a solution of sodium hydroxide. This is not according to the latest version of EN1811:2011, but was part of the previous versions of this test method.

Two participants adjusted the pH value of the solution to 5.5 instead of 6.5.

One participant used a lower amount of sodium chloride for the sweat solution.

Because in all cases above the composition of the sweat solution was not made as prescribed in the method, the test results of these six laboratories were excluded from the statistical evaluation.

Method detail: analysis technique:

The majority of the participants used ICP-OES to measure the nickel in the sweat solution. Others used ICP-MS and some used (GF)AAS. No significant differences could be found between using the different techniques.

Method detail: use of replicates to determine nickel:

Most participants replicated the nickel determination from the sweat solution, as is stated in the test method.

4.2 EVALUATION PER SAMPLE

In this section, the determination is discussed. All statistical results reported on the samples are summarised in appendix 1.

Sample #14075:

Nickel release:The determination of nickel release at a concentration level of 0.5
µg/cm²/week was problematic. Three statistical outliers were observed and
the test results of six laboratories were excluded (see paragraph 4.1).
The calculated reproducibility, after rejection of the suspect data, is not in
agreement with EN1811:2011.

Sample #14076:

<u>Nickel release</u>: The determination of nickel release at a concentration level of 13 μg/cm²/week was very problematic. One statistical outlier was observed and the test results of six laboratories were excluded (see paragraph 4.1). The calculated reproducibility, after rejection of the suspect data, is not at all in agreement with EN1811:2011.

4.3 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

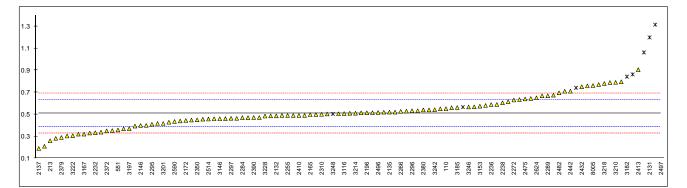
A comparison has been made between the reproducibilities as found for the group of participating laboratories and the estimated reproducibilities of EN1811:2011 (R_{target}) in the next tables:

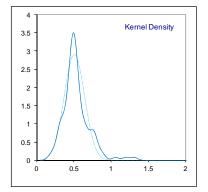
Element	unit	unit n a		2.8 * sd	R (target)
Nickel	µg/cm ² /week	102	0.511	0.384	0.170

 Table 3: reproducibilities of test results in sample #14075

Element	unit	n	average	2.8 * sd	R (target)
Nickel	µg/cm ² /week	104	12.982	11.313	4.323

Table 4: reproducibilities of test results in sample #14076

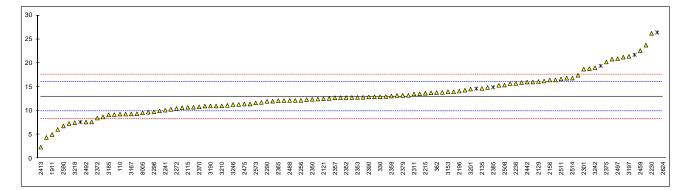

From the above table, it can be concluded, without further statistical calculations, that the participating laboratories have problems with the analysis of nickel release, when compared to the target reproducibility results of the EN1811 method.

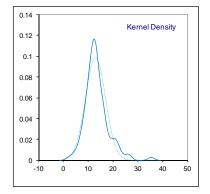

Determination of Nickel Release sample #14075; results in μ g/cm²/week

	Initiation of Nickel Re				
lab	method	value	mark	z(targ)	remarks
110	EN1811:2011 + AC:2012	0.55077		0.66	
213	EN1811:2011 + AC:2012	0.26		-4.13	
310	EN1811:2011 + AC	0.486		-0.41	
330		0.51		-0.01	
362		0.303		-3.42	
551	EN1811:2011 + AC:2012	0.3580		-2.52	
840	EN1811:2011 + AC:2012	0.55		0.64	
1911	EN1811:2011	0.282		-3.77	
2108	EN1811:2011 + AC:2012	0.417		-1.54	
2115 2121	EN1811	0.590		1.30 9.07	
2121	EN1811:2011 EN1811	1.062 0.440	R(0.05)	-1.17	
2129	EN1811	1.199	ex	11.33	See §4.1, different composition sweat solution
2131	EN1811:2011 + AC:2012	0.486	ex	-0.41	See 34.1, different composition sweat solution
2132	EN1811:2011 + AC:2012	0.52		0.15	
2137	EN1811:2011 + AC:2012	0.1895		-5.29	
2139	EN1811:2011	0.40		-1.82	
2146	EN1811:2011	0.399		-1.84	
2156	EN1811	0.71		3.28	
2165	EN1811:2011 + AC:2012	0.497		-0.23	
2172	EN1811:2011 + AC:2012	0.444		-1.10	
2190	EN1811:2011	0.32		-3.14	
2196	EN1811:2011 + AC:2012	0.515		0.07	
2201	EN1811:2011	0.644		2.19	
2215	EN1811:2011	0.505085		-0.09	
2229	EN1811:2011	0.456		-0.90	
2230	EN1811:2011	0.498		-0.21	
2232	EN1811:2011	0.333		-2.93	
2236	EN1811:2011 + AC:2012	0.589	С	1.29	First reported: 1.216
2238	EN1811:2011 + AC:2012	0.605		1.55	
2241	EN1811:2011 + AC:2012	0.560		0.81	
2247	EN1811:2011	0.448		-1.03	
2255	EN1811:2011	0.49		-0.34	
2256	EN1811:2011	0.393		-1.94	
2266	EN1811	0.527		0.27	
2272	EN1811:2011	0.63		1.96	
2284 2289	EN1811:2011 + AC:2012 EN1811:2011	0.470 0.669		-0.67 2.60	
2209	EN1811:2011 + AC:2012	0.568		2.00 0.94	
2290	EN1811	0.41	С	-1.66	First reported: 0.11
2296	EN1811:2011	0.533	0	0.36	
2297	EN1811:2011 + AC:2012	0.464		-0.77	
2301	EN1811	0.490		-0.34	
2310	EN1811:2011 + AC:2012	0.50		-0.18	
2311	EN1811:2011 + AC:2012	0.52		0.15	
2350	EN1811:2011 + AC:2012	0.450		-1.00	
2352	EN1811:2011 + AC:2012	0.5150		0.07	
2353	EN1811	0.5140		0.05	
2357	EN1811:2011 + AC:2012	0.49		-0.34	
2359	EN1811:2011 + AC:2012	0.529		0.30	
2365	EN1811:2011 + AC:2012	0.758		4.07	
2366	EN1811:2011 + AC:2012	0.519		0.13	
2370	EN1811	0.789		4.58	
2372	EN1811	0.3501		-2.65	
2375	EN1811:2011 + AC:2012	0.21		-4.95	
2379	EN1811:2011 + AC:2012	0.29		-3.63	
2380 2385	EN1811:2011 + AC:2012 EN1811	0.54	ex	0.48 5.80	See 84.1 pH of sweat solution too low
2385	EN1811 EN1811	0.863 0.471	ex	5.80 -0.66	See §4.1, pH of sweat solution too low
2390 2403	EN1811:2011 + AC:2012	0.471		-0.66	
2403	EN1811:2011 + AC.2012 EN1811:2011	0.470		-0.87	
2410	EN1811:2011 + AC:2012	0.906		-0.34 6.50	
2425	EN1811:2011 + AC:2012	0.54		0.48	
2432	EN1811:2011	0.751		3.95	
2440	GB/T19719:2005	0.741	C, ex	3.79	First reported: 0.926; see §4.1, ammonia used to adjust pH
2442	EN1811	0.71		3.28	
2459	EN1811	0.369		-2.33	
2475	EN1811	0.64		2.13	
2482	EN1811:2011 + AC:2012	0.6959		3.05	
2488	EN1811:2011	0.503		-0.13	
2492	EN1811	0.634		2.03	
2495	EN1811:2011	0.471		-0.66	
2496	EN1811:2011	0.5170		0.10	
2497	EN1811:2011 + AC:2012	2.74	C, R(0.01)	36.69	First reported: 1.74
2500	EN1811:2011	0.58		1.14	
2508	EN1811:2011	0.796		4.69	

Nickel Release: iis14V03

2511	EN1811:2011	0.533		0.36		
2514	EN1811:2011	0.457		-0.89		
2522		0.46		-0.84		
2549	EN1811:2011	0.771		4.28		
2566	EN1811	0.338		-2.84		
2573	EN1811:2011 + AC:2012	0.461		-0.82		
2575	EN1811	0.435		-0.82		
	-					
2605	EN1811	0.464		-0.77		
2624	EN1811:2011	0.650		2.29		
3100	EN1811:2011	0.428		-1.36		
3116	EN1811:2011	0.507		-0.06		
3146	EN1811:2011 + AC:2012	0.46		-0.84		
3151	EN1811:2011 + AC:2012	0.615		1.71		
3153	EN1811:2011 + AC:2012	0.574		1.04		
3167	EN1811:2011	0.32		-3.14		
3172	EN1811:2011	0.49		-0.34		
3180	EN1811:2011	0.566	ex	0.91	See §4.1. ammor	nia used to adjust pH
3182	in house	0.8426	ex	5.46		sweat solution too low
3185	EN1811:2011 + AC:2012	0.562	U.	0.84	000 3, pri or c	
3190	EN1811:2011 + AC:2012	0.668		2.59		
3197	EN1811	0.37		-2.32		
3201	EN1811:2012	0.37		-2.32		
3201	EIN1011.2012			-1.54		
	ENIO					
3210	EN1811	0.79		4.60		
3214	EN1811:2011 + AC:2012	0.51		-0.01		
3218	EN1811:2011	0.78		4.43		
3220	DIN12472/1811	0.33		-2.98		
3222	EN1811:2011	0.306		-3.37		
3225	EN1811	0.674		2.69		
3228	EN1811:2011 + AC:2012	0.484		-0.44		
3237	EN1811:2011	0.353		-2.60		
3242	EN1811:2011 + AC:2012	0.542		0.51		
3243	EN1811	1.31454	C, R(0.01)	13.23	First reported: 1.1	15901
3246	EN1811:2011	0.5670	-, (,	0.92		
3248	EN1811:2011	0.504	ex	-0.11	See §4.1. ammor	nia used to adjust pH
8005	EN1811:2011	0.761	0,1	4.12	000 3 m , aminor	
		0.1.01				
					All data	
	normality	ОК			OK	
	n	102			107	
	outliers	3 (+6ex)			4	
	mean (n)	0.5108			0.5198	
		0.13704			0.14335	
	st.dev. (n)					
	R(calc.)	0.3837			0.4014	
	R(EN1811:2011)	0.1701			0.1731	Compare R(Horwitz) = 0.2532




Determination of Nickel Release sample #14076; results in μ g/cm²/week

lab	method	value	mark	z(targ)	remarks
110	EN1811:2011 + AC:2012	9.2699		-2.40	
213	EN1811:2011 + AC:2012	16.21		2.09	
310	EN1811:2011 + AC	13.53		0.36	
330 362		12.9 13.799		-0.05 0.53	
551	EN1811:2011 + AC:2012	8.6890		-2.78	
840	EN1811:2011 + AC:2012	15.69		1.75	
1911	EN1811:2011	4.993		-5.17	
2108	EN1811:2011 + AC:2012	9.961		-1.96	
2115		10.710		-1.47	
2121	EN1811:2011	12.473		-0.33	
2129 2131	EN1811 EN1811	16.09 26.4	07	2.01 8.69	See §4.1, different composition sweat solution
2131	EN1811:2011 + AC:2012	14.870	ex	1.22	See 94.1, different composition sweat solution
2135	EN1811:2011 + AC:2012	14.65		1.08	
2137	EN1811:2011 + AC:2012	10.7143		-1.47	
2139	EN1811:2011	13.84		0.56	
2146	EN1811:2011	4.39		-5.56	
2156	EN1811	16.43		2.23 -0.54	
2165 2172	EN1811:2011 + AC:2012 EN1811:2011 + AC:2012	12.151 11.99		-0.54 -0.64	
2190	EN1811:2011	6.06		-4.48	
2196	EN1811:2011 + AC:2012	14.11		0.73	
2201	EN1811:2011	11.39		-1.03	
2215	EN1811:2011	13.6463		0.43	
2229	EN1811:2011	12.122		-0.56	
2230 2232	EN1811:2011 EN1811:2011	26.22 21.217		8.57 5.33	
2232	EN1811:2011 + AC:2012	15.73	С	1.78	First reported: 31.50
2238	EN1811:2011 + AC:2012	11.321	Ũ	-1.08	
2241	EN1811:2011 + AC:2012	10.102		-1.87	
2247	EN1811:2011	16.44		2.24	
2255	EN1811:2011	12.89		-0.06	
2256 2266	EN1811:2011 EN1811	12.151 23.738		-0.54 6.97	
2200	EN1811:2011	10.455		-1.64	
2284	EN1811:2011 + AC:2012	10.62		-1.53	
2289	EN1811:2011	9.697		-2.13	
2290	EN1811:2011 + AC:2012	11.956	_	-0.66	
2295	EN1811	9.34	С	-2.36	First reported: 2.06
2296 2297	EN1811:2011 EN1811:2011 + AC:2012	9.747 12.76		-2.10 -0.14	
2301	EN1811	18.705		3.71	
2310	EN1811:2011 + AC:2012	12.8		-0.12	
2311	EN1811:2011 + AC:2012	13.5		0.34	
2350	EN1811:2011 + AC:2012	12.39		-0.38	
2352	EN1811:2011 + AC:2012	12.7462		-0.15	
2353 2357	EN1811 EN1811:2011 + AC:2012	12.7653 12.71		-0.14 -0.18	
2359	EN1811:2011 + AC:2012	13.061		0.05	
2365	EN1811:2011 + AC:2012	12.099		-0.57	
2366	EN1811:2011 + AC:2012	13.75		0.50	
2370	EN1811	10.8		-1.41	
2372 2375	EN1811 EN1811:2011 + AC:2012	8.4403 20.2		-2.94 4.68	
2375 2379	EN1811:2011 + AC:2012 EN1811:2011 + AC:2012	20.2 13.20		4.68 0.14	
2380	EN1811:2011 + AC:2012	13.22		0.15	
2385	EN1811	14.90	ex	1.24	See §4.1, pH of sweat solution too low
2390	EN1811	12.88		-0.07	
2403	EN1811:2011 + AC:2012	14.284		0.84	
2410 2413	EN1811:2011 EN1811:2011 + AC:2012	10.984 2.352		-1.29 -6.88	
2413	EN1811:2011 + AC:2012	13.18		0.13	
2432	EN1811:2011	17.422		2.88	
2440	GB/T19719:2005	21.695	ex	5.64	See §4.1, ammonia used to adjust pH
2442	EN1811	16.00		1.96	
2459 2475	EN1811	22.593		6.23	
2475 2482	EN1811 EN1811:2011 + AC:2012	11.38 12.4161		-1.04 -0.37	
2482	EN1811:2011 + AC.2012	12.4101		-0.55	
2492	EN1811	7.632		-3.47	
2495	EN1811:2011	12.955		-0.02	
2496	EN1811:2011	12.56		-0.27	
2497	EN1811:2011 + AC:2012	20.89		5.12	
2500 2508	EN1811:2011 EN1811:2011	12.32 15.36		-0.43 1.54	
2000	2.41011.2011	10.00		1.54	

Nickel Release: iis14V03

2511 2514	EN1811:2011 EN1811:2011	16.657 16.82		2.38 2.49		
2522		12.73	С	-0.16	First reported: 44	
2549	EN1811	18.80	С	3.77	First reported: 31	
2566 2573	EN1811 EN1811:2011 + AC:2012	16.81 11.634	С	2.48 -0.87	First reported: 33	.80
2590	EN1811	6.792		-4.01		
2605	EN1811	7.31		-3.67		
2624	EN1811:2011	35.45	R(0.01)	14.55		
3100	EN1811:2011	7.64		-3.46		
3116	EN1811:2011	9.19		-2.46		
3146	EN1811:2011 + AC:2012	10.97		-1.30		
3151 3153	EN1811:2011 + AC:2012 EN1811:2011 + AC:2012	11.11 13.96		-1.21 0.63		
3153	EN1811:2011 + AC.2012 EN1811:2011	9.3		-2.38		
3172	EN1811:2011	10.27		-1.76		
3180	EN1811:2011	19.392	ex	4.15	See §4.1, ammor	nia used to adjust pH
3182	in house	7.6089	ex	-3.48		weat solution too low
3185	EN1811:2011 + AC:2012	9.131		-2.49		
3190	EN1811:2011 + AC:2012	10.978		-1.30		
3197	EN1811	21.40	0	5.45	Cinet new enterly 7.0	
3201 3203	EN1811:2012	14.522	С	1.00	First reported: 7.2	201
3203	EN1811	11.0		-1.28		
3214	EN1811:2011 + AC:2012	9.28		-2.40		
3218	EN1811:2011	7.48		-3.56		
3220	DIN12472/1811	16.0		1.96		
3222	EN1811:2011	15.320		1.51		
3225	EN1811	15.879		1.88		
3228	EN1811:2011 + AC:2012	11.73		-0.81		
3237	EN1811:2011	13.961		0.63		
3242 3243	EN1811:2011 + AC:2012 EN1811	18.992 20.8		3.89 5.06		
3245	EN1811:2011	20.8 11.2778		-1.10		
3248	EN1811:2011	14.622	ex	1.06	See §4.1 ammor	nia used to adjust pH
8005	EN1811:2011	9.56	ÖK	-2.22		
					All data:	
	normality	suspect 104			suspect 110	
	n outliers	104 1 +(6 ex)			1	
	mean (n)	12.9817			13.2246	
	st.dev. (n)	4.04030			4.29122	
	R(calc.)	11.3129			12.0154	
	R(EN1811:2011)	4.3229			4.4038	Compare R(Horwitz) = 3.9540

Analytical details for samples #14075 and #14076:

	#14075			#14076			
lab	volume (ml)	area (cm²)	Ni-conc. (µg/l)	volume (ml)	area (cm²)	Ni-conc. (µg/l)	remarks
110	3	3	330.467	7.25	7.22	6692.9	#14076: area higher than possible
213	100	2.825	7.22667	10000	2.43	3.94	#14076: possibly part was covered?
310	3	2.85	138.433	6	6.32	8566	
330	4	3.34		7	6.69		#14075: area higher than possible
362	10	2.83	86	10	6.57	9066	
551	25	2.84	40.6667	25	6.56	2280	
840		2.83	0.155		6.68	5.24	
1911	2.9	2.840	32.1134	6.5	6.499	649.0	
2108	25	2.88	48	25	6.55	2610	
2115	3	2.8	166.667	6.3	6.3	3400	
2121	25	2.85	60.6	20	6.60	1646.2	
2129	2.5	2.871	507.337	13.0	6.791	8406.712	
2131	5	2.88	690.667	10	6.77	17882	
2132	3	2.85	277	7	6.60	7010	
2135	25	2.8	59.0	25	5.91	3460	
2133	3.0	2.8	53.0667	7.0	6.3	1350	
2137	3.0 10			10			
		2.8	112		6.9	9550	
2146	2	2.83	113.0	4	6.61	2903	
2156	10	2.8	198	25	6.5 6.50	4273	
2165	3.0	2.81	93.0667	6.5	6.52	2440	
2172	2.80	2.80	249.033	6.57	6.57	7874	
2190	5	2.823	180	5	3.71	4500	#14076: possibly part was covered?
2196	10	2.83	145.87	25	6.63	3742.6	
2201	2.8667	2.8666667	184.667	6.7	6.7	1526	
2215	5.00	2.92	147.333	10.0	6.66	3635	
2229	2.8	2.800	456.10	6.5	6.518	12156	
2230	5	2.84	283	10	6.72	17620	
2232	8.0	2.42	80.4667	10.0	6.136	5207.2	
2236	2.82	2.82	171.333	10	5.99	3770	
2238	2.8	2.8	605.333	6.6	6.6	11321	
2241	2.853	2.853	159.733	6.66	6.66	6727.8	
2247	10	2.82	126.433	25	6.60	4342	
2255	10	2.81	137.667	25	6.57	3387.0	
2256	10	2.83	111.333	25	6.563	3190	
2266	10	2.9	150.4	25	7	66.030	#14076: area higher than possible
2272	10	2.84	179.1	25	6.59	2756	
2284	3.00	2.87	453.667	4	6.62	1758	
2289	2.8	2.8	187.333	6.6	6.6	2560	
2290	2.84	2.84	161.333	6.67	6.67	3190	
2295	5	2.87	1011000	10	6.67	0.00	
2296	2	2.901	154.67	5	6.614	3223	
2290	3.0	2.901 2.8	132	6.5	6.4	3263	
2301	3.0 10	2.6 2.6578	128.33	10	6.4668	12.096	
2301	3	2.84	120.33	6	6.4000 6.33	162	
2310	5	2.84 2.8	144.667	8 10	6 .5	175	
			1001			175	
2350	10	2.828	146.267	25	6.563	226 F	
2352	2.85	2.84		6.60 7	6.58 6.60	336.5	#1407E: groe bisher there are it is
2353	4	3.34	0.513	7	6.69 6.61	12.77	#14075: area higher than possible
2357	3	2.85	140.533	7	6.61	3361	
2359	3	2.83	150.000	7	6.61	3453	
2365	2.80	2.80	212.333	6.67	6.67	1614	
2366	3.0	2.83	0.29333	7.0	6.64	9.11	
2370	10	2.84	224.333	10	6.64	7170	
2372	10	2.88	100.867	10	6.59	5562	
2375	10	2.8	3	10	6.6	7	
2379	2.84	2.84	167.7	6.45	6.45	8530	
2380	3.00	2.79	302.7	7.00	6.52	8620	
2385	3	2.85	807.0	7	6.65	13940	
2390	2.9	2.86	135.0	6.7	6.69	431	

Analytical details for samples #14075 and #14076, continued:

Ibb volume (m) area (cm) Ni-conc. (ugn) remarks 240 10 3 2.8 136.267 7 6.6 2899.7 2410 3 2.8 136.267 7 6.6 2899.7 2413 10 2.02 7.3.2 10 5.91 556.0 2425 5 2.78.3 299.6 10 6.6 9708.80 2425 10 2.85 214.1 11 6.49 10279.2 2440 5.0 2.84 201.5 10 6.63 10610.00 2442 10 2.84 207.667 7 6.59 21270 2475 10 2.83 2.07.467 7 6.59 21280 2482 2.867 2.89 7.0433 3.36 6.58 1236 2482 2.05 2.89 7.0433 3.66 6.23 325.0 2496 5.0 2.84 5.8667 2.5.0 6.60	Analy		etails for sample	5 # 140/ 5 allu				
2400 10 2.8 131.667 25 6.6 3771 2410 3 2.8 136.267 7 6.6 2899.7 2413 10 2.02 73.2 10 5.91 556.0 2425 5 2.783 299.6 10 6.6 8708.90 2432 10 2.84 105.2 8.0 6.64 900.362 2440 5.0 2.84 2.85 207.67 7 6.59 21270 2450 5 2.85 207.67 7 6.59 1238 2484 2.8267 2.8266667 69.8333 6.58 6.58 1238 2484 2.484 143.061 10 6.7 813.148 2489 2.50 2.84 143.061 10 6.7 813.148 2495 5.00 2.860 29.33 5.00 3.687 9553 #14076: possibly part was covered? 2496 25.0 2.84 58.6667 25.0 6.62 3325.0 4497 2490 12 2.84 <th>lah</th> <th>#14075 volume (ml)</th> <th></th> <th>Ni-conc (ug/l)</th> <th>#14076 volume (ml)</th> <th>area (cm²)</th> <th>Ni-conc (ug/l)</th> <th>remarks</th>	lah	#14075 volume (ml)		Ni-conc (ug/l)	#14076 volume (ml)	area (cm²)	Ni-conc (ug/l)	remarks
2410 3 2.8 136.267 7 6.6 289.7 2413 10 2.02 73.2 10 5.91 55.0 2425 5 2.783 299.6 10 6.6 8708.90 2420 5.0 2.84 105.2 8.0 6.64 900.327.2 2440 5.0 2.84 201.5 10 6.63 10610.00 2453 5 2.85 207.667 7 6.59 2127 2442 2.8267 2.826667 69.833 6.58 6.58 1238 2482 2.8267 2.86 269.33 5.00 3.667 955.3 #14076: possibly part was covered? 2492 2.15 2.84 58.6667 25.0 6.62 3325.0 2497 12 2.43 30.333 10 6.63 11490 2500 5 2.83 30.333 10 6.67 114075: area higher than possible 2511 5								Temarka
2413 10 5.91 556.0 2425 5 2783 299.6 10 6.6 8708.90 2432 10 2.85 214.1 11 6.49 10279.2 2440 5.0 2.84 105.2 8.0 6.64 90.362 2442 10 2.84 201.5 10 6.63 1061.00 2442 10 2.84 207.67 7 6.59 21270 2475 10 2.88 207.233 2.0 6.58 3767.96 2483 3 2.44 143.081 10 6.7 813.148 2492 2.15 2.89 73.0433 3.36 6.324 1930.258 2495 5.00 2.80 26.33 5.00 3.687 9533 #14076: possibly part was covered? 2496 5.00 2.84 58.6667 2.5.0 6.62 3325.0 2.50 2497 12 2.34 330.333 10 6.579 9909 2.511 5 2.8 300.104 10 5.9								
2425 5 2.783 299.6 10 6.6 8708.90 2432 10 2.85 214.1 11 6.49 10279.2 2442 10 2.84 2015.5 10 6.64 900.362 2442 10 2.84 2015.5 10 6.63 10610.00 2453 10 2.85 207.677 7 6.59 21270 2475 10 2.88 207.233 20 6.58 133.148 2488 2.8267 2.826667 69.8333 6.50 6.324 1930.255 2489 2.15 2.89 7.30433 3.36 6.324 1930.255 2496 2.00 2.86 38.133 12 6.60 11490 2500 12 2.34 338.133 10 6.57 9909 2511 5 2.82 12.8 100 6.57 9909 2514 10 2.82 12.5.743 10								
2432 10 2.85 214.1 11 6.49 10279.2 2440 5.0 2.64 105.2 8.0 6.64 90.3 2442 10 2.84 201.5 10 6.63 10610.0 2475 5 2.85 207.667 7 6.59 21270 2472 10 2.88 207.233 20 6.58 3767.96 2482 2.8267 2.826667 9.8333 6.58 6.58 1238 2488 3 2.84 143.081 10 6.7 813.148 2492 2.15 2.89 7.3433 3.36 6.324 130.258 2496 25.0 2.84 58.6667 25.0 6.62 3325.0 2500 5 2.83 30.333 10 6.579 9909 2511 5 2.83 30.0104 10 5.91 9805.0 2521 5 4.92 225.73 10 <								
2440 5.0 2.84 105.2 8.0 6.64 900.362 2442 10 2.84 201.5 10 6.63 1061.00 2459 5 2.85 207.667 7 6.59 21270 2475 10 2.88 207.233 20 6.58 1238 2488 3 2.846 143.081 10 6.7 813.148 2492 2.15 2.89 73.0433 3.36 6.324 1930.258 2496 5.00 2.860 269.333 5.00 3.687 953.0 #14076: possibly part was covered? 2497 12 2.34 338.133 12 6.60 11480 2500 5 2.83 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.62 11185.0 2549 10 2.82 128.5 10 6.62 11486 2566 5 2.65								
2442 10 2.84 201.5 10 6.63 10610.00 2455 5 2.85 207.667 7 6.59 21270 2475 10 2.86 207.637 7 6.59 21270 2482 2.8267 2.826667 6.8333 6.58 6.58 1238 2482 2.15 2.84 143.081 10 6.7 813.146 2492 2.15 2.86 7.30433 3.36 6.324 1390.258 2495 5.00 2.860 269.333 5.00 3.687 9553 #14076: possibly part was covered? 2497 12 2.34 338.133 12 6.60 1490 2500 5 2.83 300.104 10 5.91 999.9 2514 10 2.82 125.73 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 </td <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>								
2459 5 2.85 207.667 7 6.59 21270 2475 10 2.88 207.233 20 6.58 377.96 2482 2.8267 2.826667 6.8333 6.58 6.58 1238 2488 3 2.84 143.081 10 6.7 813.148 2492 2.15 2.80 73.0433 3.36 6.324 1930.258 2495 5.00 2.86 269.333 5.00 3.667 9553 #14076: possibly part was covered? 2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 300.333 10 6.57 9190 2511 5 2.82 125.0 10 6.62 8400 #14075: area higher than possible 2549 10 2.89 125.0 5 6.81 1400 2550 2.9 134.667 6.61 1390 14075: area higher than possible								
2475 10 2.88 207.233 20 6.58 3767.96 2482 2.8267 2.826667 69.8333 6.58 6.58 1238 2488 3 2.84 143.081 10 6.7 813.148 2492 2.15 2.89 73.0433 3.36 6.324 1930.256 2495 5.00 2.860 269.333 5.00 3.687 9553 #14076: possibly part was covered? 2496 25.0 2.84 58.6667 25.0 6.62 3325.0 2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 300.333 10 6.63 8195 2508 10 2.752 212.33 10 6.65 11185.0 2524 10 2.82 128.5 10 6.66 11185.0 2529 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 189.03 6.54 6.54 76080 1400<								
2482 2.8267 2.826667 69.8333 6.58 6.58 1238 2488 3 2.84 143.081 10 6.7 813.148 2492 2.15 2.89 73.0433 3.36 6.324 1930.258 2495 5.00 2.860 269.333 5.00 3.67 955.3 #14076: possibly part was covered? 2496 25.0 2.84 58.6667 25.0 6.62 3325.0 2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 300.133 10 6.579 9909 2514 10 2.82 128.5 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 70680 2580 2 2.85 125.0 5 6.8 4593 2664 2.99 134								
2488 3 2.84 143.081 10 6.7 813.148 2492 2.15 2.80 73.0433 3.36 6.324 1930.258 2496 5.00 2.860 269.333 5.00 3.687 9553 #14076: possibly part was covered? 2496 25.0 2.84 58.6667 25.0 6.62 3325.0 2497 12 2.34 38.133 12 6.60 11490 2500 5 2.83 300.333 10 6.67 9909 2511 5 2.8 300.104 10 5.91 9894.500 2544 10 2.82 128.5 10 6.65 11185.0 2525 5 4.92 223.7 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 225.743 10 6.62 85.4 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 131.63 6.5 6.6 1930								
2492 2.15 2.89 73.0433 3.36 6.324 1930.258 2495 5.00 2.860 269.333 5.00 3.687 9553 #14076: possibly part was covered? 2496 25.0 2.84 58.6667 25.0 6.62 3325.0 2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 330.333 10 6.63 8195 2508 10 2.752 212.333 10 6.6579 9909 2511 5 2.8 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.65 11185.0 2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 128.50 5 6.8 4503 2560 2 2.8 128.0 5 6.8 4593 2605 2.9 134.667 6.6 6.61 1930 2624 2.9 <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>								
2495 5.00 2.860 269.333 5.00 3.687 9553 #14076; possibly part was covered? 2496 25.0 2.84 58.6667 25.0 6.62 325.0 2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 30.333 10 6.63 8195 2508 10 2.752 212.333 10 6.65 8195 2511 5 2.8 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.62 85.84 2522 5 4.92 223 7 6.6 8400 #14075; area higher than possible 2549 10 2.89 225.743 10 6.32 21400 10 2590 2 2.85 179.667 10 6.32 21400 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10								
2496 25.0 2.84 58.6667 25.0 6.62 3325.0 2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 330.333 10 6.63 8195 2508 10 2.752 212.333 10 6.6579 9909 2511 5 2.8 300.104 10 5.91 9894.500 2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2566 5 2.65 179.667 10 6.62 85.84 2569 2 2.65 199.0 25.743 10 6.64 1930 2624 2.9 2.89 134.667 6.6 6.61 1930 2624 2.9 2.89 189.033 6.6 6.61 1930 2624 2.9 2.89 189.033 6.5 6.5 1985.71 3116 3 2.84 130.667 6.39 5400 5400 5400 5400 556 516 5165 <								
2497 12 2.34 338.133 12 6.60 11490 2500 5 2.83 330.333 10 6.63 8195 2508 10 2.752 212.333 10 6.579 9909 2511 5 2.8 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.65 11185.0 2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 76080 2590 2 2.85 125.0 5 6.8 4593 2604 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 189.067 6.7 6.64 2440 3146 2.84 130.667 6.39 6.39 500 3153 2.9 2.88 162.67 6.7 6.68								#14076: possibly part was covered?
2500 5 2.83 330.333 10 6.63 8195 2508 10 2.752 212.333 10 6.579 9909 2514 5 2.8 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.65 11185.0 2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 225.743 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.66 1930 2605 2.9 2.9 134.667 6.6 6.61 1930 2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 19.8 6.5 6.5 1985.71 3116 3 2.84 130.667 7 6.68 186.5 3157 5 2.8 162.67 <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>								
2508 10 2.752 212.333 10 6.579 9909 2511 5 2.8 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.65 11185.0 2522 5 4.92 223 7 6.6 86.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 76080 2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.6 6.61 1930 2604 2.9 2.89 189.033 6.6 6.61 1848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 130.667 6.39 6.39 5400 3151 3 2.9 2.83 165.267 6.7 <								
2511 5 2.8 300.104 10 5.91 9894.500 2514 10 2.82 128.5 10 6.65 11185.0 2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 225.743 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.66 1930 2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.66 6.61 11848 3100 2.8 2.84 144 7 6.64 2440 3116 3 2.84 144 7 6.64 2440 3146 2.84 130.667 6.39 6.39 5400 3151 3 2.88 164.667 7 6.7 11110 3153 2.9 2.883 165.267 6.70								
2514 10 2.82 128.5 10 6.65 11185.0 2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 225.743 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 76080 2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.6 6.61 1930 2624 2.9 2.89 189.033 6.6 6.51 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 130.667 6.39 6.39 5400 3151 3 2.88 165.267 6.7 11110 3153 2.9 2.88 165.267 6.70 1268.37 3167 5 2.8 165.2987 6.650 10268.37								
2522 5 4.92 223 7 6.6 8400 #14075: area higher than possible 2549 10 2.89 225.743 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 76080 2505 2.9 2.85 125.0 5 6.6 1930 2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 130.667 6.39 6.39 5400 3146 2.84 2.84 130.667 6.7 11110 11353 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 9300 1444 144 144 144 1444 1444 1444 1444<								
2549 10 2.89 225.743 10 6.62 85.84 2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 76080 2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.6 6.6 1930 2604 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.54 2400 3116 3 2.84 130.667 6.39 5400 440 3116 3 2.84 130.667 7 6.7 11110 3153 2.9 2.83 165.267 6.7 11110 4.000 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 2.64.267 7.0 6.5 8479 3182 10 2.8 524.467 7.0 6.								
2566 5 2.65 179.667 10 6.32 21400 2573 2.84 2.84 1310.33 6.54 6.54 76080 2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.6 6.6 1930 2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.628 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.5 8479 <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td>#14075: area higher than possible</td>								#14075: area higher than possible
2573 2.84 2.84 1310.33 6.54 6.64 76080 2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.6 6.6 1930 2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 2.64.267 7.0 6.5 8479 3185 3.0 2.8 524.467 7.0 6.5 8479 <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td>								
2590 2 2.85 125.0 5 6.8 4593 2605 2.9 2.9 134.667 6.6 6.6 1930 2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.62 186.5 3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 #14076: possibly part was covered? 3190 <td< td=""><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td></td></td<>								
2605 2.9 2.9 134.667 6.6 6.6 1930 2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 5615<								
2624 2.9 2.89 189.033 6.6 6.61 11848 3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 #14076: possibly part was covered? 3190 2.8 2.8 106.333 6.6 6.56 5615 3201 10								
3100 2.8 2.8 119.8 6.5 6.5 1985.71 3116 3 2.84 144 7 6.64 2440 3146 2.84 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 264.267 7.0 6.5 8479 3182 3.0 2.8 264.267 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 10978 3190 2.8 2.8 106.333 6.6 5615 3201 10 2.8 106.67 20 6.9 5010								
3116 3 2.84 144 7 6.64 2440 3146 2.84 2.84 130.667 6.39 6.39 5400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 5615 3201 10 2.8 116.667 20 6.9 5010 3203 								
3146 2.84 130.667 6.39 6.400 3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 628 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3190 2.8 2.8 106.333 6.6 5615 5010 3201 10 2.8 116.667 20 6.9 5010 3203 								
3151 3 2.88 614.667 7 6.7 11110 3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 628 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203 - - - - 5010								
3153 2.9 2.883 165.267 6.7 6.68 186.5 3167 5 2.8 179 6.28 628 9300 3172 4.000 2.870 355.987 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203				130.667				
3167 5 2.8 179 6.28 6.28 9300 3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203								
3172 4.000 2.870 355.987 6.650 6.650 10268.37 3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203								
3180 6.0 2.8 264.267 7.0 6.4 17730 3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203								
3182 10 2.8 236 10 3.61 2747 #14076: possibly part was covered? 3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203				355.987				
3185 3.0 2.8 524.467 7.0 6.5 8479 3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203								
3190 2.8 2.8 667.667 6.7 6.7 10978 3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203								#14076: possibly part was covered?
3197 2.9 2.88 106.333 6.6 6.56 5615 3201 10 2.8 116.667 20 6.9 5010 3203 3203 3203 3203 3203 3203 3203 3203				524.467				
3201 10 2.8 116.667 20 6.9 5010 3203	3190	2.8	2.8	667.667	6.7	6.7	10978	
3203								
		10	2.8	116.667	20	6.9	5010	
3210 10 2.84 223.333 10 6.63 7260								
3214 10 2.8 142.667 25 6.52 2420								
3218 2.8 2.8 216.867 6.5 6.5 1944.7								
3220 10 2 6.63333 10 2.954 472.6 Possibly part was covered?								Possibly part was covered?
3222 3 2.80 85.7533 10 6.48 4963.68								
								#14076: area higher than possible
3228 2.89 2.89 140 6.63 6.63 3110								
3237 5 2.864 10.1213 10 6.671 37.254								
3242 50 2.827 30.6667 50 2.83 1075 Same value for both: typing error?								Same value for both: typing error?
3243 2.84 2.84 1159.01 6.517 6.517 20800								
3246 5.00 2.848 323 10 6.511 7343								
3248 2.8 2.86 57.6667 6.5 6.54 3825						6.54		
8005 3 2.83 215.333 7 6.64 2540	8005	3	2.83	215.333	7	6.64	2540	

Figures in bold:

Value of area outside normal distribution found for the area of the sample Normal distribution for #14075 $2.86 - 2.90 \text{ cm}^2$ and for #14076 $6.35 - 6.81 \text{ cm}^2$. See §4.1: Calculation of surface area

Test method procedure details for samples #14075 and #14076:

		pretreat											
	Test vessel material	vessel	with	sample	with	date of test	pН	Urea	NaCl	lactic acid	NaOH	analysis technique	use replicates?
110	Polypropylene	No	with	degreas. No	with	sol. prep. 30-5-2014	<u>µ</u> ⊓ 6.5	Yes	Yes	Yes	Yes	ICP-MS	No
213	Polypropylene	No		Yes	0.5% sodium dodecylbenzene sulfonic acid	16-5-2014	6.5	0.1%	0.5%	0.1%	105	ICP-MS	No
310	Glass	No		Yes	Mild soap	26-5-2014	6.45	Yes	Yes	Yes	Yes	ICP-MS	No
330	Class	110		100		2002011	0.10	100	100	100	100	ICP-MS	No
362	Glass	Yes	5% Nitric Acid for 10 hrs.	No		31-05-2014	6.50	Yes	Yes	Yes		ICP-OES	Yes
551	Glass	Yes	20% Nitric Acid for 5 hrs.	Yes	Sodium laureth sulfate	26-05-2014	6.51	Yes	Yes	Yes		ICP-MS/ICP-OES	Yes
840	Glass	No		Yes	Degreasing solution	19-05-2014	6.5					ICP-OES	Yes
1911	Glass / LDPE	Yes	5% Nitric Acid for 5 hrs.	Yes	sodium dodecylbenzene sulfate sol.	02-06-2014	6.496	0.1%	0.5%	0.1%	Yes	GFAAS / FAAS	Yes
2108	Polypropylene	No		Yes	0.5% sodium dodecyl sulfate	16-05-2014	6.48	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
2115	Polypropylene	No		Yes	0.5% sodium dodecylbenzene sulfate	22-05-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2121	Glass	Yes	2% Nitric Acid for 8 hrs	Yes	0.5% sodium dodecyl sulfate	28-05-2014	6.49	Yes	Yes	Yes	Yes	ICP-MS	Yes
2129	Polystyrene / Glass	No		Yes	0.5% detergent	30-05-2014	6.490-6.509	0.1%	0.5%	0.1%			Yes
2131	Polypropylene	No		Yes	sodium dodecyl sulfate	26-05-2014		0.1%	0.1%	0.1%		ICP-MS	Yes
2132	Polypropylene	No		Yes	0.5% sodium dodecylbenzene sulfate	23-05-2014	6.5	0.1%	0.5%	0.1%	Yes	AAS	Yes
2135	Glass	No		Yes	Washing up liquid	19-05-2014	6.55	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2137	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	sodium dodecylbenzene sulfate sol.	02-06-2014	6.5	0.1%	0.5%	0.1%		ICP-OES	Yes
2139	Polypropylene	No		No		05-06-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2146	Glass	No		Yes	0.5% Extran	20-05-2014	6.47	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2156	Polypropylene	Yes	5% Nitric Acid for 4 hrs	Yes	1% detergent	27-05-2014	6.5	0.1%	0.5%	0.1%		ICP-OES	Yes
2165	Polypropylene	No		Yes	0.5% sodium dodecylbenzene sulfate	30-05-2014	6.52	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2172	Polypropylene	Yes	10% Nitric Acid for 24 hrs	Yes	degrease solution	21-05-2014	6.51	0.1%	0.5%	0.1%		ICP-OES	Yes
2190	Glass	No		No	0		6.5	0.1%	0.5%	0.1%	Yes	ICP-OES	No
2196	Glass	Yes	5% Nitric Acid for 4 hrs	Yes	0.5% sodium dodecylbenzene sulfate	29-05-2014	6.51	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2201	Polypropylene	Yes	15% Nitric Acid for 12 hrs	Yes	Degreasing solution	29-05-2014	6.45-6.49	0.1%	0.5%	0.1%	Yes	ICP-MS/ICP-OES	Yes
2215	Polypropylene	Yes	10% Nitric Acid for 24 hrs	No	5 5	03-06-2014	6.50	Yes	Yes	Yes	Yes	ICP-OES	Yes
2229	Polypropylene	No		Yes	Detergent	27-05-2014	6.527	Yes	Yes	Yes	Yes	ICP-MS	No
2230	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	sodium dodecylbenzene sulfonate	16-06-2014	6.49-6.51	Yes	Yes	Yes		ICP-OES	Yes
2232	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	sodium dodecylbenzene sulfonate	12-06-2014	6.51	0.1%	0.5%	0.1%		ICP-OES	Yes
2236	Glass	No		Yes	5% dodecyl sulfonic acid	03-06-2014	6.49	0.1%	0.5%	0.1%		ICP-OES	Yes
2238	Glass	Yes	5% Nitric Acid for 24 hrs	Yes	0.5% sodium dodecylbenzene sulfate	06-06-2014	6.51	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2241	Polypropylene	No		Yes	0.5% sodium dodecylbenzene sulfate	29-05-2014	6.50-6.52	0.1%	0.5%	0.1%		ICP-OES	Yes
2247	Polypropylene	No		Yes	0.5% detergent	22-05-2014	6.49	0.1%	0.5%	0.1%		ICP-OES	Yes
2255	Glass	Yes	5% Nitric Acid for 4 hrs	Yes	Degreasing solution	06-06-2014	6.5	0.1%	0.5%	0.1%		ICP-MS	No
2256	Glass	No		Yes	Detergent	29-05-2014	6.49	Yes	Yes	Yes		ICP-OES	Yes
2266	Polypropylene	No		Yes	dodecyl sulfate solution	21-05-2014	6.51	A	cidified A	rtificial Sv	veat	ICP-OES	Yes
2272	Polypropylene	No		Yes	Degreasing solution	23-05-2014	6.50	Yes	Yes	Yes		ICP-OES	Yes
2284	Polypropylene	Yes	10% Nitric Acid for 24 hrs	Yes	Detergent	21-05-2014	6.51	0.1%	0.5%	0.1%		ICP-OES	Yes

		pretreat											
	Test vessel material	vessel	with	sample degreas.	with	test sol prep	рH	Urea	NaCl	lactic acid	NaOH	analysis technique	use replicates?
2289	Polypropylene	Yes	5% Nitric Acid for 12 hrs	Yes	0.5% dodecylbenzene sulfonate	05-06-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2290	Glass	Yes	10% Nitric Acid for 24 hrs	Yes	1% sodium dodecylbenzen sulfonate	26-05-2014	6.48	0.1%	0.5%	0.1%		ICP-MS	Yes
2295					·····								
2296	Polypropylene	No		Yes	Tri-sodium di phosphate decahydrate	29-05-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2297	Polyethylene	Yes	5% Nitric Acid for 24 hrs	Yes	0.1% sodium dodecylbenzene sulfonate	22-05-2014	6.51	Yes	Yes	Yes	Yes	ICP-OES	Yes
2301	Glass	No				26-05-2014	6.52	0.1%	0.5%	0.1%	Yes	ICP-OES	No
2310	Glass	Yes	5% Nitric Acid for 4 hrs	Yes	0.5% sodium dodecylbenzene sulfonic acid	05-06-2014	6.50	0.1%	0.5%	0.1%	Yes	AAS	Yes
2311	Glass	Yes	5% Nitric Acid for 4 hrs	No		20-05-2014	6.48-6.50	0.1%	0.5%	0.1%	Yes	AAS	Yes
2350	Glass	Yes	5% Nitric Acid for 4 hrs	Yes	dodecylbenzen sulfate solution	21-05-2014	6.52	Yes	Yes	Yes	Yes	ICP-OES	Yes
2352	Polypropylene	Yes	Nitric Acid for 24 hrs	No		23-05-2014	6.48-6.51	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2353	Glass	Yes	5% Nitric Acid for 8 hrs	Yes	0.5% sodium dodecylbenzene sulfate	16-05-2014	6.49	0.1%	0.5%	0.1%	Yes	ICP-OES	No
2357	Polypropylene	No		No			6.50	0.1%	0.5%	0.1%		ICP-OES	Yes
2359	Polypropylene	Yes	5% Nitric Acid for 5 hrs.	Yes	0.5% sodium dodecylbenzene sulfonate	22-05-2014	6.53	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2365	Polypropylene	No		Yes	5% sodium dodecylbenzene sulfate	04-06-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2366	Polyethylene	Yes	1:1 Hydrochloric Acid for 96 hrs	Yes	household detergent	19-05-2014	6.50	Yes	Yes	Yes		ICP-OES	Yes
2370	Other	Yes	Nitric Acid for 1/3 hrs	No		28-05-2014	6.51	Yes	Yes	Yes		ICP-OES	Yes
2372	Polypropylene	No		Yes	sodium dodecylbenzene sulfonate	27-05-2014	6.51	Yes	Yes	Yes	Yes	ICP-OES	No
2375	Polypropylene	No		Yes	EN1811:2011+AC2012	02-06-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-MS/ICP-OES	Yes
2379	Glass	Yes	20% Nitric Acid for 12hrs	Yes	Teepol	23-05-2014	6.58	0.1%	0.5%	0.1%		ICP-OES	Yes
2380	Glass	Yes	5% Nitric Acid for 12 hrs	Yes	5% dodecyl sulfonic acid	01-06-2014	6.46	Yes	Yes	Yes	Yes	AAS	Yes
2385	Polypropylene	No		Yes	0.1% dodecylsulfate solution	04-06-2014	5.5	Yes	Yes	Yes	Yes	ICP-OES	Yes
2390	Polypropylene	Yes	5% Nitric Acid for 4 hrs	No		27-05-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2403	Glass	Yes	5% Nitric Acid for 24 hrs	Yes	0.5% anion surfactant	29-05-2014	6.48	0.1%	0.5%	0.1%		ICP-OES	No
2410	Polypropylene	No		No		22-05-2014	6.5	0.1%	0.5%	0.1%		ICP-OES	Yes
2413	Glass	No		No		09-06-2014	6.5	ar	tificial sw	eat		ICP-OES	No
2425	Glass	No		Yes	0.50% detergent solution	05-06-2014	6.5	0.1%	0.5%	0.1%		ICP-OES	No
2432	Polypropylene	Yes	5% Nitric Acid for 4 hrs	No		19-05-2014		0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
2440	Polypropylene	No		Yes	0.5% sodium dodecylbenzene sulfonate sol.	04-06-2014	6.48	0.1%	0.5%	0.1%	NH3	ICP-OES	Yes
2442	Polypropylene	No		No		29-05-2014	6.5	0.1%	0.5%	0.1%		ICP-MS	Yes
2459	Glass	Yes	Sodium dodecylbenzene sulfonated for 1/2 hrs	Yes	sodium dodecylbenzene sulfonate	18-06-2014	6.52	Yes	Yes	Yes	Yes	AAS	Yes
2475	Glass	Yes	5% Nitric Acid for 24 hrs	Yes	sodium dodecylbenzene sulfonate	04-06-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
2482	Polypropylene	No		No		02-06-2014	6.5	Yes	Yes	Yes	Yes	ICP-OES	No
2488	Glass	no		Yes	0.5% sodium dodecyl sulfate	05-06-2014	6.51	0.1%	0.5%	0.1%		ICP-MS	Yes
2492	Polypropylene	No		Yes	sodium dodecylbenzene sulfonate	16-05-2014	6.509	0.1%	0.5%	0.1%		ICP-MS	Yes
2495	Polypropylene	No		Yes	0.1% sodium dodecylsulfate	28-05-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2496	Polypropylene	Yes	5% Nitric Acid for 4 hrs	Yes	0.5% sodium dodecylbenzene sulfate	29-05-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2497	Glass	Yes	Dilute Nitric Acid for 4 hrs	No		20-05-2014	6.51	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
2500	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	5% dodecyl benzene sulfonate	05-06-2014	6.48-6.51	0.1%	0.5%	0.1%		ICP-OES	Yes
2508													

Institute for Interlaboratory Studies

2511	polytetrafluoroethylen e	No		Yes	0.5% sodium dodecyl benzene sulfonate	17-06-2014	6.51	0.1%	0.5%	0.1%		ICP-MS	No
		pretreat											
	Test vessel material	vessel	with	sample degreas.	with	test sol prep	pН	Urea	NaCl	lactic acid	NaOH	analysis technique	use replicates?
2514	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	Degreasing solution	04-06-2014	6.5	0.1%	0.5%	0.1%	Huorr	analysis toornique	No
2522	Polypropylene	Yes	distilled water for 1/2 hrs	Yes	Degreasing solution	06-06-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2549	Polypropylene	Yes	for 2 hrs	Yes	commercial detergent powder	26-05-2014	6.50	0.1%	0.5%	0.1%		ICP-MS	Yes
2566	Polypropylene	No		Yes	dodecylbenzene sulfonated	29-05-2014	6.5	Yes	Yes	Yes		ICP-OES	Yes
2573	Glass	Yes	1% Nitric Acid for 0.25 hrs	Yes	0.5% sodium alkylaryl sulfonate	23-05-2014	6.53	0.1%	0.5%	0.1%		ICP-OES	Yes
2590	Polypropylene	No		No		16-05-2014	6.4	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
2605	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	0.5% sodium dodecylbenzene sulfate	30-05-2014	6.51	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
2624	Polypropylene	Yes	5% Nitric Acid for 4 hrs	Yes	0.5% sodium alkyl sulfate	04-06-2014	6.49	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
3100	Glass	Yes	Dilute Nitric Acid for 4 hrs	Yes	Degreasing solution	27-05-2014	6.50-6.52	0.1%	0.5%	0.1%	Yes	ICP-OES	No
3116	Polypropylene	No		Yes	Degreasing solution	05-06-2014	6.5	Yes	Yes	Yes		ICP-OES	Yes
3146	Polypropylene	Yes	5% Nitric Acid for 4 hrs	Yes	sodium dodecyl sulfate	23-05-2014	6.54	Yes	Yes	Yes		ICP-OES	Yes
3151	Polypropylene	No		Yes	0.5% sodium dodecyl sulfate	16-05-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
3153	Glass	Yes	5% Nitric Acid for 24 hrs	Yes	Sodium dodecylbenzene sulfonate sol	28-05-2014	6.5	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
3167	Glass	Yes	5% Nitric Acid for 24 hrs	No		03-06-2014	6.50	0.1%	0.5%	0.1%		ICP-OES	No
3172	Polypropylene	No		Yes	sodium dodecylbenzene sulfate sol.	03-06-2014	6.56	Yes	Yes	Yes	Yes	ICP-MS	Yes
3180	Glass	No		Yes	sodium dodecyl sulfate sol	20-05-2014	6.5	0.1%	0.5%	0.1%	NH3	GFAAS	Yes
3182	Glass	Yes	10% Nitric Acid for 2 hrs	No		05-06-2014	5.4					ICP-MS	Yes
3185	Glass	No		Yes	5% sodium dodecylbenzene sulfate	03-06-2014	6.49	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
3190	Polypropylene	Yes	20% Nitric Acid for 24 hrs	Yes	0.5% sodium dodecylbenzene sulfate	30-05-2014	6.51	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
3197	Glass	Yes	5% Nitric Acid for 4 hrs	Yes	Degreasing solution	03-06-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
3201	PMP Glass/PMP	Yes	flushed with dil. nitric acid	Yes	Diluted dish liquid	21-05-2014	6.5	Yes	Yes	Yes	Yes	GFAAS	Yes
3203													
3210	Polystyrene	No		Yes		20-05-2014	6.15-6.57	0.1%	0.5%	0.1%		ICP-OES	No
3214	Glass	Yes	5% Nitric Acid for 18 hrs	Yes	Acid detergent (Citranox)	05-06-2014	6.47	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
3218	Polypropylene	Yes	5% Nitric Acid for 5 hrs.	Yes	0.5% sodium dodecylbenzene sulfate	03-06-2014	6.51	0.1%	0.5%	0.1%		ICP-MS	Yes
3220	Glass	Yes	test solution for 1 hr	Yes	0.5% sodium dodecylbenzene sulfonate	04-06-2014	6.5	Yes	Yes	Yes		ICP-MS	No
3222	Glass	Yes	3% Nitric Acid (storage condition)	Yes	0.5% sodium dodecylbenzene sulfate	21-05-2014	6.52	0.1%	0.5%	0.1%	Yes	GFAAS	Yes
3225	Glass	Yes	5% Nitric Acid for 12 hrs	Yes	sodium dodecylsulfate	03-06-2014	6.5	0.1%	0.5%	0.1%		ICP-OES	Yes
3228	Polypropylene	No		Yes	sodium dodecylbenzene sulfate	21-05-2014	6.47	0.1%	0.5%	0.1%	Yes	ICP-OES	Yes
3237	Polypropylene	No		Yes		20-05-2014	6.47	0.1%	0.5%	0.1%	Yes	ICP-MS	Yes
3242	Polypropylene	Yes	rinsed with buffer solution	Yes	Degreasing solution	19-05-2014	6.55	0.1%	0.5%	0.1%	Yes	ICP-OES	No
3243	Polypropylene	Yes	5% Nitric Acid for 4 hrs	Yes	Fit solution	19-05-2014	6.53	0.1%	0.5%	0.1%	Yes	GFAAS/ICP-OES	Yes
3246	Polypropylene	No		Yes	Aceton	03-06-2014	6.50	0.1%	0.5%	0.1%	Yes	ICP-OES	No
3248	Glass	Yes	Artifical Sweat solution for 1 hrs	No		29-05-2014	6.4	0.1%	0.5%	0.1%	NH3	ICP-OES	Yes
8005	Polypropylene	No		Yes	Degreasing solution	06-05-2014	6.5	Yes	Yes	Yes		ICP-OES	Yes

Number of participants per country

5 labs in BANGLADESH 1 lab in BRAZIL 1 lab in BULGARIA 1 lab in FINLAND 6 labs in FRANCE 10 labs in GERMANY 8 labs in HONG KONG 7 labs in INDIA 1 lab in INDONESIA 7 labs in ITALY 4 labs in KOREA 1 lab in MALAYSIA 1 lab in MOROCCO 33 labs in P.R. of CHINA 2 labs in PAKISTAN 1 lab in POLAND 1 lab in SINGAPORE 2 labs in SWITZERLAND 4 labs in TAIWAN R.O.C. 2 labs in THAILAND 1 lab in THE NETHERLANDS 1 lab in TUNISIA 5 labs in TURKEY 3 labs in U.S.A. 1 lab in UNITED KINGDOM 3 labs in VIETNAM

Abbreviations:

С	= final result after checking of first reported suspect result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner' outlier test
R(0.05)	= straggler in Rosner' outlier test
n.a.	= not applicable
n.d.	= not detected
W	= result withdrawn on request of participant
ex	= excluded from calculations
fr.	= first reported result

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, April 2014
- 2 Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning (REACH) under entry 27 of Annex XVII, 2012
- 3 EN1811:2011 + AC2012
- 4 Horwitz. Journal of AOAC International Vol. 79 No.3. 1996
- 5 P.L. Davies. Fr Z. Anal. Chem. 351. 513. (1988)
- 6 W.J. Conover. Practical; Nonparametric Statistics. J. Wiley&Sons. NY. p.302. (1971)
- 7 ISO 5725 (1986)
- 8 ISO 5725 parts 1-6. (1994)
- 9 ISO13528:2005 Statistical methods for use in proficiency testing by interlaboratory comparisons
- 10 M. Thompson and R. Wood. J. AOAC Int. 76. 926. (1993)
- 11 Analytical Methods Committee Technical brief, No4 January 2001.
- 12 The Royal Society of Chemistry 2002, Analyst 2002, 127 page 1359-1364, P.J. Lowthian and M. Thompson (see http://www.rsc.org/suppdata/an/b2/b205600n/).
- 13 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), pp. 165-172, (1983)