Results of Proficiency Test Gas condensate November 2013

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands Authors: ing. R.J. Starink

Authors:ing. R.J. StarinkCorrectors:dr. R.G. Visser and ing. L. SweereReport:iis13R03

January 2014

CONTENTS

1	INTRODUCTION
2	SET UP
2.1	QUALITY SYSTEM
2.2	PROTOCOL
2.3	CONFIDENTIALITY STATEMENT
2.4	SAMPLES
2.5	STABILITY OF THE SAMPLES
2.6	ANALYSES
3	RESULTS
3.1	STATISTICS
3.2	GRAPHICS
3.3	Z-SCORES
4	EVALUATION
4.1	EVALUATION PER TEST
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES
4.3	COMPARISON OF NOVEMBER 2013 PT WITH PREVIOUS PTS

Appendices:

1.	Data, statistical results and graphic results	11
2.	z-scores distillation	18
3.	Number of participating laboratories per country	19
4.	Abbreviations and literature	20

1 INTRODUCTION

Since 2008, the Institute for Interlaboratory Studies organizes a proficiency test for Gas condensate every year. During the annual proficiency testing program 2013/2014, it was decided to continue the round robin for the analysis of Gas condensate. In this interlaboratory study, 44 laboratories from 17 different countries have participated. See appendix 3 for the number of participating laboratories per country. In this report, the results of the 2013 Gas condensate proficiency test are presented and discussed.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. Sample analyses for fit-for-use and homogeneity testing were subcontracted. It was decided to send 1 sample of Gas condensate (1* 0.5 L bottle labelled #13202). Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentially of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary bulk material, approximately 50 litre was obtained from a local supplier. After homogenisation, 98 amber glass bottles of 0.5 litre were filled and labelled as sample #13202

The homogeneity of the subsamples #13202 was checked by determination of Density @15°C in accordance with ASTM D4052:11 on 8 stratified randomly selected samples.

	Density @ 15 °C in kg/L
Sample #13202-1	743.52
Sample #13202-2	743.57
Sample #13202-3	743.55
Sample #13202-4	743.55
Sample #13202-5	743.53
Sample #13202-6	743.53
Sample #13202-7	743.50
Sample #13202-8	743.60

Table 1: homogeneity test results of subsamples #13202

From the above test results, the repeatabilities were calculated and compared with 0.3 times the corresponding target reproducibility in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Density @ 15 °C in kg/L
r sample	0.09
reference method	ASTM D4052:11
0.3xR(reference method)	0.64

 Table 2: repeatability of subsamples #13202

The calculated repeatability was less than 0.3 times the reproducibility of the respective reference method. Therefore, homogeneity of the subsamples #13202 was assumed.

To each of the participating laboratories, 1 * 0.5 L bottle (labelled #13202) were sent on October 16, 2013.

2.5 STABILITY OF THE SAMPLES

The stability of Gas condensate, packed in the brown glass bottles, was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were requested to determine on sample #13202: Density @ 15°C, total Sulphur, Distillation (IBP, 5%, 10%, 50%, 90%, 95% recovered and FBP), Colour Saybolt, Water by KF and Mercury.

To get maximum information for the statistical calculations, the participants were requested to report unrounded results and results below the usual lower reporting limits, where possible.

To get comparable results a detailed report form, on which the units were prescribed as well as some of the required standards and a letter of instructions were prepared and made available for download on the iis website.

A SDS and a form to confirm receipt of the samples were added to the sample package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered. The original data are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder fax was sent to the laboratories that had not reported results at that moment. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

In accordance to ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 4; nos.12 and 13)

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. The target standard deviation was calculated from the literature reproducibility by division with 2.8. The z-scores were calculated in accordance with:

 $z_{(target)} = (result - average of PT) / target standard deviation$

The $z_{(target)}$ scores are listed in the result tables in appendix 1.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate the fit-for-useness of the reported test result.

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

|z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory

4 EVALUATION

In this proficiency test, some problems were encountered during the transport of the samples to the laboratories in Indonesia, Malaysia, Nigeria, Norway, Oman, Qatar, Russia, United Arab Emirates and United Kingdom. The samples took an unexpected long time to reach a number of laboratories due to several problems with custom clearance and/or transport companies.

Eleven participants reported test results after the final reporting date and eight laboratories did not report any test results at all due to several reasons. In total 36 laboratories reported 216 numerical results. Observed were 15 outlying results, which is 6.9%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section, the results are discussed per test. Not all original data sets proved to have a normal distribution. Not normal distributions were found for the following determinations: Colour Saybolt, Density, Distillation 10%rec, Mercury and Water. In these cases the statistical evaluation should be used with due care.

- <u>Colour Saybolt:</u> This determination was problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ASTM D156:12.
- <u>Density @15°C:</u> This determination was not problematic. Two statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D4052:11. It should be noticed that ASTM D4052:11 gives reproducibilities for the density range 0.71 g/ml to 0.88 g/ml, being valid only for petroleum distillates and viscous oils. Therefore this 2011 version is in principle not applicable for Gas condensates. It should be noted that Gas condensates may contain relatively high concentrations of light ends and therefore should be treated as gasoline, i.e. cooling the sample prior to analysis to prevent loss of light ends.
- <u>Distillation</u>: This determination was very problematic. In total eight statistical outliers were observed. After rejection of the statistical outliers none of the calculated reproducibilities is in agreement with the requirements for automated or manual mode of ASTM D86:12b, except for 5%, 50% and 95% recovered (manual mode). However, the scope of ASTM D86 does not include Gas condensates, but only products with a limited boiling range like distillate fuels, so the target reproducibilities as used in this report may not be applicable. The use of a simdist determination may be more appropriate.

- The precision requirements of UOP938 (table 3b) are extremely strict and Mercury: as they are 6 - 7 times more strict than the Horwitz estimate, these requirements will not be met easily. Also, the reproducibility of UOP938 is only available for very low concentrations (0.28 and 12.14 µg/L, table B3) and conversion and extrapolation up to 104 µg/kg will lead to extra uncertainty. Therefore, it was decided to use the Horwitz estimates for evaluation of the test results in this report. This determination appeared to be problematic at a consensus of 104 µg Hg/kg. No statistical outliers were observed. The calculated reproducibility is not at all in agreement with the estimated reproducibility calculated using the Horwitz equation. One false negative was observed. The large spread may (partly) explained by the low number of test results, the variety of test methods used, reporting in a different unit µg/L instead of in µg/kg as requested and/or the presents of particle bound mercury. Sulphur: This determination was very problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not at all in agreement with the requirements of ASTM D5453:12. Water: This determination was not problematic. Three statistical outliers were
- Water:
 This determination was not problematic. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D6304:07. It must be noted that the precision data of ASTM D4928 are not applicable at this low concentration (valid between 0.02 5.00%M/M).

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The average results of sample #13202, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM standards) are compared in the next table.

Parameter	unit	n	mean	2.8 * sd	R (lit)
Colour Saybolt		15	15.0	3.0	2.0
Density @ 15°C	kg/m ³	33	743.7	1.4	2.1
Initial Boiling Point	°C	15	32.5	9.7	5.0
5%-recovered	°C	15	54.9	7.0	3.2
10%-recovered	°C	15	65.6	6.4	3.2
50%-recovered	°C	15	122.8	4.1	1.9
90%-recovered	°C	13	263.2	10.2	6.1
90%-recovered	°C	7	301.0	11.5	6.9
Final Boiling Point	°C	14	317.5	10.8	6.8
Mercury as Hg	µg/kg	15	104.3	147.3	65.7
Sulphur	mg/kg	19	80.0	29.2	15.5
Water content by KF	mg/kg	24	36.5	17.9	146.3

Table 3: performance evaluation sample #13202

Without further statistical calculations it can be concluded from the overview given in table 3 that for almost all tests there is not a good compliance of the group of participants with the relevant standards. The problematic tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2013 WITH THE PREVIOUS PTS

	November 2013	November 2012	November 2011	November 2010
Number of reporting participants	36	38	41	25
Number of results reported	216	234	283	215
Number of statistical outliers	15	25	29	25
Percentage of statistical outliers	6.9%	10.7%	10.2%	11.6%

Table 4: comparison with previous proficiency tests

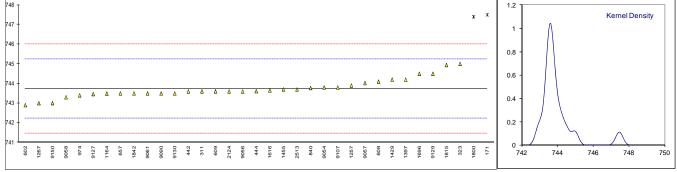
The performance of the determinations of the proficiency tests was compared against the requirements of the respective standards. The conclusions are given the following table:

Determination	November 2013	November 2012	November 2011	November 2010
Colour Saybolt	-			
Density @ 15 °C	++	-	++	-
Distillation (ASTM D86)				
Mercury as Hg			-	
Sulphur		++		+
Water content by KF	++	-	-	-
Total vapour pressure	n.e.	-	-	
DVPE acc. to ASTM D5191	n.e.	+/-	+	

Table 5: comparison of the performance per determination against the target requirements

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

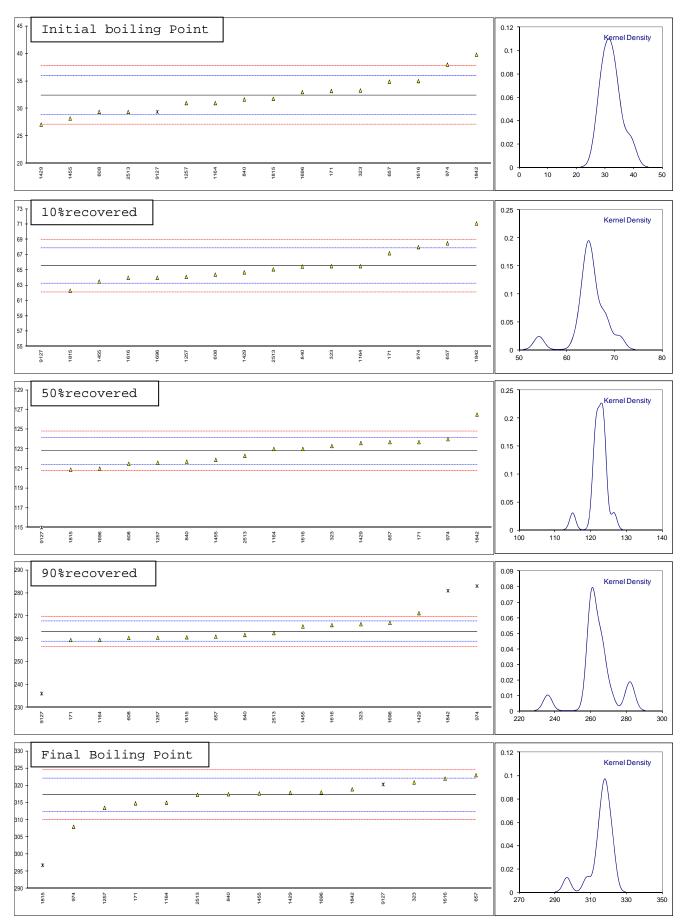
- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e.: not evaluated


APPENDIX 1

Determination of	Colour	Savholt	on sam	nle #13202).
	Coloui	Jaybuit	UII SaIII	pie #13202	<u> </u>

		i Ooloui Ouyk					
lab	method	value	mark	z(targ)	remarks		
171	D156	16		1.40			
311							
323	D156	15		0.00			
323	D130						
442							
444	D6045	14		-1.40			
602							
608	D156	13		-2.80			
000	D130						
609							
657	D156	13		-2.80			
840							
974	D156	22	G(0.01)	9.80			
4000	D130		0(0.01)				
1023	_		_				
1164	D156	14	С	-1.40	First reported 23		
1214							
1257	D156	16		1.40			
1207	D130						
1267							
1397							
1429	D6045	16		1.40			
1455	D6045	15		0.00			
1505	20040						
1585	B a a <i>i</i> =						
1616	D6045	15		0.00			
1696	D6045	15		0.00			
1800							
1815							
1842							
1857							
1949							
2124	D156	16		1.40			
	D130						
2513							
9050							
9054							
9055							
0050							
9056							
9057							
9058							
9061							
0000	DEOIE			1.40			
9090	D6045	16					
9107	D156	16		1.40			
9108							
9117							
9127	D156	15		0.00			
0100	D130						
9129							
9130							
9150							
	n o rm o litu	not OK					
	normality	not OK					
	n	15					
	outliers	1					
	mean (n)	15.0					
		10.0					
	st.dev. (n)	1.07					
	R(calc.)	3.0					
	R(D156:12)	2.0					
		2.0					
24 T						0.35	
						0.00	Kernel Density
22 -					ж	0.3 -	A
						0.5	
20 -						0.25 -	[]
						0.25	
18 -						0.2 -	11
						0.2	/ 1
16 -				Δ		0.15 -	
_		Δ Δ	Δ Δ	Δ		0.15	/ 1
14 -	Δ	۵				0.1 -	/ 1
Δ	·····					0.1	
12 -						0.05 -	
						0.05	
1 1						1	

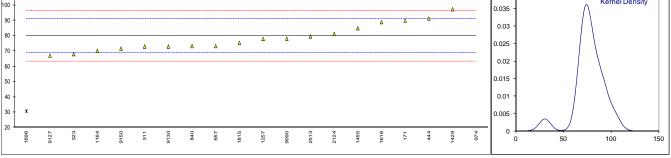
Determination of Density @ 15°C on sample #13202; results in kg/m³


lab	method	value	mark	z(targ)	remarks	
171	D4052	747.5	G(0.01)	4.98		
311	D4052	743.6	- (/	-0.19		
323	D4052	745.0		1.67		
442	D4052	743.6		-0.19		
444	D4052	743.61		-0.17		
602	D1298	742.9		-1.11		
608	D4052	744.1		0.48		
609	D5002	743.60		-0.19		
657	D4052	743.5		-0.32		
840	D4052	743.77		0.04		
974	D4052	743.4		-0.45		
1023						
1164	D4052	743.49		-0.33		
1214						
1257	D4052	743.9		0.21		
1267	D4052	743		-0.98		
1397	D4052	744.2		0.61		
1429	D4052	744.2	-	0.61		
1455	D4052	743.7	С	-0.05	First reported 0.7437	
1585						
1616	D4052	743.65		-0.12		
1696	D1298	744.50	0 / 0 0 / 0	1.01		
1800	D4052	747.4	G(0.01)	4.84		
1815	ISO12185	744.94	•	1.59	F : () () 7 (05	
1842	D4052	743.5	С	-0.32	First reported 0.7435	
1857						
1949	D4052					
2124	D4052	743.6		-0.19		
2513	D4052	743.7		-0.05		
9050 9054	D4052	743.8		0.08		
9054 9055	D4032					
9055 9056	INH-21	743.6		-0.19		
9057	D5002	744.02		0.13		
9058	D5002	743.3		-0.58		
9061	D5002	743.5		-0.32		
9090	D4052	743.5		-0.32		
9107	D4052	743.8		0.08		
9108	2.002					
9117						
9127	D4052	743.46		-0.37		
9129	in house	744.5		1.01		
9130	D4052	743.5		-0.32		
9150	D4052	743.0		-0.98		
	normality	not OK				
	normality	not OK				
	n outliers	33 2				
		z 743.74				
	mean (n)					
	st.dev. (n) R(calc.)	0.485 1.36				
	R(D4052:11)	2.11				
	11(04032.11)	2.11				
						[
⁷⁴⁸ T						1.2

Determination of Distillation on sample #13202; results in °C

lab	method	IBP	mark	5%rec	mark	10%rec	mark	50%rec	mark	90%rec	mark	95%rec	mark	FBP	mark
171	D86-A	33.2		56.3		67.2		123.7		259.5		298.8		314.8	
311															
323	D86-A	33.3		55.2		65.5		123.3		266.4				320.9	
442															
444															
602															
608 609	D86-A	29.4		53.7		64.4		121.5		260.4					
657	D86-A	34.9		58.5		68.5		123.7		261.0		304.7		323.0	
840	D86-A	31.67		55.10		65.46		121.71		261.68		303.12		317.46	
974	D86-M	38.0		55.0		68.0		124.0		283.0	DG(1)			308.0	
1023											- ()				
1164	D86-A	31.0		54.5		65.5		123.0		259.5		300.5		315.0	
1214															
1257	D86-A	31.0		53.9		64.1		121.6		260.5		303		313.5	
1267															
1397								102.6							
1429 1455	D86-A D86-A	27.1 28.2		53.5 51.9		64.7 63.5		123.6 121.9		271.2 265.4				317.9 317.7	
1435	D00-A	20.2								205.4					
1616	D86-M	35.0		56.0		64.0		123.0		266.0		304.0		322.0	
1696		33.00		53.00		64.00		121.00		267.00		293.00		318.00	
1800															
1815	ISO3405-A	31.8		51.0		62.3		120.9		260.7				296.8	G(1)
1842	D86-A	39.8		61.1		71.1		126.5		281.0	DG(1)			318.9	
1857															
1949															
2124								400.0							
2513 9050	D86-A	29.4		54.0		65.1		122.3		262.5				317.3	
9050															
9055															
9056															
9057															
9058															
9061															
9090															
9107															
9108 9117															
9117	D86-A	29.4	ex	37.9	G(1)	54.2	G(1)	115.0	G(1)	236.1	G(5)	266.0	G(1)	320.3	ex
9129	DOUA		CX.		0(1)		0(1)		0(1)		0(0)		0(1)		UX
9130															
9150															
	normality	OK		OK		not OK		OK		OK		OK		OK	
	n	15		15		15		15		13		7		14	
	outliers	0		1		1		1		3		1		1	
	mean (n)	32.45		54.85		65.56		122.78		263.21		301.02		317.48	
	st.dev. (n) R(calc.)	3.479 9.74		2.505 7.01		2.270 6.36		1.462 4.09		3.626 10.15		4.088 11.45		3.844 10.76	
Auto	R(D86:12)	4.98		3.20		3.20		1.88		6.14		6.85		6.78	
	R(D86:12)			8.86		4.63		6.30		7.69		10.51		7.20	
	·(_ 50·· _)														

Determination of Distillation continued on sample #13202; result in %V/V



Determination of Mercury as Hg on sample #13202; results in μ g/kg

171 UOP938 58 -1.98 Also reported 220 µg/kg (UOP938) and 290 µg/kg (ASTM D7623) 321 INH-001 210 450 Also reported 220 µg/kg (UOP938) and 290 µg/kg (ASTM D7623) 322	lab	method		value		mark	7	(targ)	rom	arks							
311 INH-001 210 4.50 Also reported 220 µg/kg (UOP938) and 290 µg/kg (ASTM D7623) 442 UOP938 85.0 -0.82 669 UOP938 54.0465 -0.44 670 UOP938 54.0465 -0.44 671 UOP938 54.0465 -0.44 672 UOP938 54.0465 -0.44 673 UOP938 175 3.01 1164 1274 1287 in house 139.25 -1.37 1386 1495 in house 139.25 -1.37 1495 1595 1616 1616 1616 1617 1618 1619						IIIdi K			Ten	ains							
323									Also	renort	ed 220	ua/ka		338) ar	nd 290 ug/k	a (ASTM	D7623)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									7130	report	cu 220	µg/ng	(001.	50) ai	na 200 µg/i	Ng (AO I M	DT023)
444 UOP338 85.0 -0.82 609 UOP338 94.0465 -0.44 637 UOP338 54 -2.15 940																	
602 609 UOP338 94.0465 -0.44 609 UOP388 175 3.01 1023																	
609 UOP938 94.0465 -0.44 677 UOP938 54 -2.15 774 UOP938 175 3.01 1184		00F930															
609 UOP38 94.0465 -0.44 67 UOP38 54 -2.15 840 0098.6 175 3.01 1023																	
667 UOP38 54 -2.15 80					_												
840 UOP938 175 3.01 1023 1184 1257 1287 1287 1287 1287 1287 1287 1287 1285 1386 DE23 96.97 -0.31 1885 1985 UOP938 144.46 1.71 1887 1985 IN1-45 65.43 1985 IN1-5 3.29 9056 UOP938 181.5 9057 UOP938 181.5 9057 UOP938 nill 9107 UOP938 nill 9108					2												
974 UOP338 175 3.01 1023		00P938															
$1023 \qquad \dots \qquad \dots \qquad \dots \\ 1124 \qquad \dots \qquad \dots \\ 1257 \qquad \dots \qquad \dots \\ 1258 \qquad \dots \\ 1$																	
1164		00P938															
1214																	
1287																	
1397 in house 72.26 - 1.37 1429 in house 139.25 1.49 1455 1566 1616 1606 D7623 96.97 - 0.31 1810 UO938 144.46 1.71 1815 1842 1842 1847 1949 2513 2513 2514 9054 UOP38 43 - 2.61 9056 UOP38 181.5 3.29 9056 J04928 60 - 1.89 9057 UOP38 181.5 3.29 9058 9150 9177 UOP38 88.0067 - 0.78 9170 UOP38 88.0067 - 0.78 9170 UOP38 88.0067 - 0.78 9170 UOP38 nil False negative? 9120 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150																	
1397 in house 72.26 - 1.37 1429 in house 139.25 1.49 1426 in house 139.25 1.49 1606 D7623 96.97 - 0.31 1800 UOP938 144.46 1.71 1842																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
1586		in house		139.25				1.49									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
1686 D7623 96.97 -0.31 1800 UOP938 144.46 1.71 1812 1842 1949 2124 2050 9054 UOP938 43 -2.61 9055 NH-245 65.43 -1.66 9056 9057 UOP938 88.0067 -0.78 9061 D4228 60 -1.89 9061 D4228 60 -1.89 9107 UOP938 88.0067 -0.78 9117 9127 UOP938 nil 9130 9130 9130 9130 914																	
1810 UOP938 144.46 1.71 1815																	
1815 +	1696	D7623		96.97				-0.31									
1815 +	1800	UOP938		144.46				1.71									
1422																	
1857 1949 2124 2513 2050 UOP38 432.61 9055 UOP38 432.61 9055 UOP38 432.61 9056 UOP38 181.5 3.29 9061 D4928 601.89 9090 9108 9108 9108 9108 9117 9127 UOP38 86.0067 - 0.78 9127 UOP38 86.0067 - 0.78 9128 9129 9130 9130 9150																	
1949																	
$2124 \qquad \qquad 9054 UOP938 432.61 9055 INH-245 65.43 - 1.66 9056 UOP938 181.5 3.29 9057 UOP938 181.5 3.29 9061 D4928 60 - 1.89 9070 UOP938 86.0067 - 0.78 9107 UOP938 86.0067 - 0.78 9109 9117 9127 UOP938 nil False negative? 9129 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150 9150 normality not OK n 9150 normality control (K 9150 9150 normality not OK n 9150 normality not OK n 9150 normality not OK n normality not OK n 9150 normality not OK $																	
$2513 \qquad \qquad \qquad \\ 9050 \qquad \qquad \\ 9051 \qquad UOP938 \qquad 43 \qquad -2.61 \\ 9055 \qquad INH-245 \qquad 65.43 \qquad -1.66 \\ 9057 \qquad UOP938 \qquad 181.5 \qquad 3.29 \\ 9058 \qquad \qquad \\ 9061 \qquad D4928 \qquad 60 \qquad -1.89 \\ 9030 \qquad \qquad \\ 9107 \qquad UOP938 \qquad 86.0067 \qquad -0.78 \\ 9108 \qquad \qquad \\ 9117 \qquad UOP938 \qquad nil \qquad \\ 9129 \qquad \qquad \\ 9129 \qquad \qquad \\ 9130 \qquad \qquad \\ 9150 \qquad \qquad \\ 916 \qquad \qquad \\ 917 \qquad \qquad \\ 918 \qquad \qquad \\ 918 \qquad \qquad \\ 919 \qquad \qquad \\ 919 \qquad \qquad \\ 919 \qquad \qquad \\ 9107 \qquad \qquad \\ 9108 \qquad \qquad \\ 9117 \qquad \qquad \\ 9129 \qquad \qquad \\ 9129 \qquad \qquad \\ 9130 \qquad \qquad \\ 9150 \qquad \qquad \\ 9150 \qquad \qquad \\ 9150 \qquad \qquad \\ 9150 \qquad \qquad \\ 916 \qquad \qquad \\ 917 \qquad \\ 916 \qquad \qquad \\ 916 \qquad$	2124																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
9054 UOP938 43 -2.61 9055 INH-245 65.43 -1.66 9057 UOP938 181.5 3.29 9058 9061 D4928 60 -1.89 9090 9107 UOP938 86.0067 -0.78 9108 9117 False negative? 9129 False negative? 9130 False negative? 9130 False negative? 9130 False negative? 9130 False negative? 9130 9150 9150 9160 917 False negative? 918 918 919 919 919 919 919																	
9055 INH-245 65.43 -1.66 9056 UOP938 181.5 3.29 9057 UOP938 181.5 3.29 9061 D4928 60 -1.89 9090		UOP938		43				-2.61									
9056 UOP938 181.5 3.29 9057 UOP938 181.5 3.29 9058																	
9057 UOP938 181.5 3.29 9058 $$																	
9058 9061 D4928 601.89 9090 9107 UOP938 86.0067 -0.78 9117 False negative? 9129 False negative? 9129 False negative? 9130 False negative? 9150		UOP938															
9061 D4928 60 -1.89 9090 9107 UOP938 86.0067 -0.78 9117 False negative? 9129 UOP938 nil False negative? 9130 False negative? 9130 9150 False negative? 9150 False negative? 9150 False negative? 9150 False negative? 9150		001000															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D4928															
9107 UOP938 86.0067 -0.78 9108 False negative? 9127 UOP938 nil False negative? 9129 False negative? 9130 False negative? 9150		D4320															
9108 False negative? 9127 UOP938 nil False negative? 9129 False negative? 9130 False negative? 9150					7												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		001 330															
9127 UOP938 nil False negative? 9129 9130 9150 9150 normality not OK n 15 outliers 0 mean (n) 104.33 st.dev. (n) 52.619 R(calc.) 147.33 R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $200 - \frac{4}{0.009} - \frac{1000}{0.000} - 100$																	
9129 9130 9150 normality not OK n 15 outliers 0 mean (n) 104.33 st.dev. (n) 52.619 R(calc.) 147.33 R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $\frac{200}{100}$									Fale	e nogo	tivo?						
9130 9150 normality not OK n 15 outliers 0 mean (n) 104.33 st.dev. (n) 52.619 R(calc.) 147.33 R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $\begin{bmatrix} 0.009 \\ 0.008 \\ 0.007 \\ 0.006 \\ 0.005 \\ 0.007 \\ 0.006 \\ 0.005 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.00$		001 330							i ai	se nega	uve:						
9150 normality not OK n 15 outliers 0 mean (n) 104.33 st.dev. (n) 52.619 R(caic.) 147.33 R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $\begin{bmatrix} 200 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.008 \\ 0.009 \\ 0.009 \\ 0.008 \\ 0.009 \\$																	
normality not OK n 15 outliers 0 mean (n) 104.33 st.dev. (n) 52.619 R(calc.) 147.33 R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $\begin{bmatrix} 0.009 \\ 0.009 $																	
$n = 15 \\ outliers = 0 \\ mean (n) = 104.33 \\ st.dev. (n) = 52.619 \\ R(calc.) = 147.33 \\ R(Horwitz) = 65.68 $ Compare R(UOP938) = 9.80 Compare R(UOP938) = 9.80 Compare R(UOP938) = 0.80	9150																
$n = 15 \\ outliers = 0 \\ mean (n) = 104.33 \\ st.dev. (n) = 52.619 \\ R(calc.) = 147.33 \\ R(Horwitz) = 65.68 $ Compare R(UOP938) = 9.80 Compare R(UOP938) = 9.80 Compare R(UOP938) = 0.80		normality (not OK													
outliers 0 mean (n) 104.33 st.dev. (n) 52.619 R(calc.) 147.33 R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $\begin{bmatrix} 0.009 \\ 0.008 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.006 \\ 0.007 \\ 0.007 \\ 0.006 \\ 0.007 $																	
$mean (n) 104.33 \\ st.dev. (n) 52.619 \\ R(calc.) 147.33 \\ R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $																	
$\frac{\text{st.dev.}(n)}{\text{R(calc.)}} \qquad \frac{147.33}{\text{R(Horwitz)}} \qquad 65.68 \qquad \text{Compare R(UOP938) = 9.80}$																	
$R(calc.) = 147.33 \\ R(Horwitz) = 65.68 Compare R(UOP938) = 9.80$		mean (n)															
R(Horwitz) 65.68 Compare R(UOP938) = 9.80 $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$				52.619													
250 200 150 150 150 100 100 100 100 1		R(calc.)							~	_							
A 0.008 - Kernel Density		R(Horwitz)		65.68					Cor	npare R	(UOP9	938) = 9	9.80				
A 0.008 - Kernel Density																	
200	250 T														0.009		
																•	Kernel Density
$\begin{array}{c} & & & & & \\ 150 \\ 100 \\$	200 -													Δ			
												A	Δ		0.007 -	/ \	
												4			0.006 -	\	
	150 +									۵	Δ				0.005 -		
	100 -							۵	۵						0.004 -		$\langle $
					Δ	Δ	Δ								0.003 -		
0.001 -	50 -	ΔΔ	Δ												0.002 -		
	^																$\langle \rangle$
	0														_ _	/	
	,054	171	061	055	397	444	107	609	969	429	800	974	057	311		0 100	200 300 400
	6		đ	a	÷		a,	-	÷	÷	÷		đ				400

Determination of Sulphur on sample #13202; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D5453	90		1.81	
311	D5453	73		-1.26	
323	D5453	68		-2.16	
442					
444	D5453	91.4		2.06	
602	20100				
608					
609					
657	D5453	73.3		-1.21	
840	D3433 D4294	73.3		-1.21	
974		105		4.52	
1023	D4294			4.52	
	DE 450				
1164	D5453	70.1		-1.78	
1214	D 100 1				
1257	D4294	78		-0.36	
1267					
1397					
1429	D5453	97.39		3.14	
1455	D2622	85.0		0.91	
1585					
1616	D4294	89.0		1.63	
1696	D5453	30.7	C,G(0.01)	-8.90	First reported 57.5
1800					
1815	D5453Mod.	75.3		-0.85	
1842					
1857					
1949					
2124	D5453	81.3		0.24	
2513	D5453	79.6		-0.07	
9050					
9054					
9055					
9056					
9057					
9058					
9061					
9090	D5453	78.2		-0.32	
9107					
9108					
9117					
9127	D5453	67.15		-2.32	
9129	20100				
9130	D5453	73		-1.26	
9150	D5453	71.58		-1.52	
5150	00400	71.00		1.52	
	normality	OK			
	n	19			
	outliers	1			
	mean (n)	79.980			
	st.dev. (n)	10.4359			
	R(calc.)	29.221			
	R(D5453:12)	15.504			
	11(00700.12)	10.004			
110					L
110 100					▲ 0.04 Kernel Density
					0.035 -
90 -					Δ Δ 0.03 -

Determination of Water on sample #13202; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D6304	40	mark	0.07	Temarko
311	D6304 D6304	32		-0.09	
323	D6304	42		0.00	
442	IP438	45		0.16	
444	D6304	29.8	С	-0.13	First reported 11.3
602	00004		0		
608	D4928	80.1	G(0.01)	0.83	
609	D4928	367.5	G(0.01)	6.34	
657	D6304	69	C,G(0.01)	0.62	First reported 53
840	D6304	32.2	0,0(0.01)	-0.08	
974	D6304	32		-0.09	
1023					
1164	D6304	25.9		-0.20	
1214					
1257	D6304	35		-0.03	
1267	D4928	31.65		-0.09	
1397					
1429	IP438	43.13	С	0.13	First reported 86.26
1455	D4928	<200			Reported <0.02 (probably unit error, %M/M instead of mg/kg)
1585					
1616					
1696	D6304	33.862		-0.05	
1800	D6304	32.4		-0.08	
1815	ISO12937	32.7		-0.07	
1842	IP386	41		0.09	
1857					
1949	B				
2124	D6304	34.95		-0.03	
2513	D6304	32.7		-0.07	
9050					
9054					
9055	INH-256			0.17	
9056 9057	D6304	45.305 41.02		0.17	
9058	D0304	41.02		0.09	
9061					
9090	D6304	38.65		0.04	
9107	D6304	54.8		0.35	
9108	00004				
9117					
9127	D6304	33.6		-0.06	
9129			W		Result withdrawn, reported 73.64
9130	D6304	34		-0.05	
9150	D6304	32.76		-0.07	
	normality	not OK			
	n	24			
	outliers	3			
	mean (n)	36.518			
	st.dev. (n)	6.4002			
	R(calc.)	17.920			
	R(D6304:07)	146.277			Compare R(D4928:12) = 24.900
²⁰⁰ T					0.06
180 -					Kernel Density
160 -					0.05 -
140					0.04 -
120 -					0.04
100 -					0.03 -
80 -					×
00					× 0.02 -

Δ

0 1267 44 4

0.02

0.01

0 |

APPENDIX 2:

Z-scores distillation ASTM D86

Z-scores als							
lab	IBP	5%	10%	50%	90%	95%	FBP
171	0.42	1.27	1.44	1.37	-1.69	-0.91	-1.02
311							
323	0.48	0.31	-0.05	0.77	1.45		1.50
442							
444							
602							
608	-1.72	-1.00	-1.01	-1.91	-1.28		
609							
657	1.38	3.20	2.57	1.37	-1.01	1.50	2.37
840	-0.44	0.22	-0.09	-1.59	-0.70	0.86	0.08
974	3.12	0.13	2.14	1.82	9.03		-3.83
1023							
1164	-0.82	-0.30	-0.05	0.33	-1.69	-0.21	-0.94
1214							
1257	-0.82	-0.83	-1.28	-1.76	-1.24	0.81	-1.56
1267							
1397							
1429	-3.01	-1.18	-0.75	1.22	3.64		0.26
1455	-2.39	-2.58	-1.80	-1.31	1.00		0.18
1585							
1616	1.43	1.01	-1.36	0.33	1.27	1.22	1.95
1696	0.31	-1.62	-1.36	-2.65	1.73	-3.27	0.30
1800							
1815	-0.37	-3.37	-2.85	-2.80	-1.15		-8.45
1842	4.13	5.47	4.85	5.54	8.12		0.67
1857							
1949							
2124							
2513	-1.72	-0.74	-0.40	-0.72	-0.33		0.01
9050							
9054							
9055							
9056							
9057							
9058							
9061							
9090							
9107							
9108							
9117							
9127	-1.72	-14.83	-9.94	-11.59	-12.37	-14.30	1.25
9129							
9130							
9150							
9130							
9132							
9141							
9144							
9145	0.68	-7.04	-7.04	-2.64	-2.34	-2.34	10.10
9150							
9153							

APPENDIX 3:

Number of participating laboratories per country

1 laboratory in AUSTRALIA
 1 laboratory in BELGIUM
 1 laboratory in CROATIA
 1 laboratory in INDONESIA
 6 laboratories in MALAYSIA
 1 laboratory in NIGERIA
 3 laboratories in NORWAY
 1 laboratory in OMAN
 1 laboratory in POLAND
 2 laboratories in RUSSIA
 4 laboratory in SINGAPORE
 4 laboratories in U.A.E.
 2 laboratories in U.S.A.

- 10 laboratories in UNITED KINGDOM
 - 1 laboratory in VIETNAM

APPENDIX 4

Abbreviations:

С	= final result after checking of first reported suspect result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
ex	= excluded from calculations
E	= error in calculations
n.a.	= not applicable

- W = withdrawn on request participant
- U = reported in deviating unit
- SDS = Safety Data Sheet

Literature:

- 1 i.i.s. Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 ASTM E178-02
- 3 ASTM E1301-03
- 4 ISO 5725-86
- 5 ISO 5725, parts 1-6, 1994
- 6 ISO 13528-05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP367/96
- 9 DIN 38402 T41/42
- 10 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 11 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 12 Analytical Methods Committee Technical Brief, No4 February 2001
- 13 The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M. Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)