Results of Proficiency Test Transformer Oil October 2012

Institute for Interlaboratory Studies Spijkenisse, the Netherlands Organised by:

Author:

ing. L.Dijkstra dr. R.G. Visser & ing. L.Sweere Corrector:

Report: iis12L04

February 2013

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	. 9
4.3	COMPARISON OF THE OCTOBER 2012 PROFICIENCY TEST WITH PREVIOUS PT'S	10

Appendices:

1.	Data and statistical results	12
2.	Number of participants per country	34
3.	Abbreviations and literature	35

1 Introduction

Since 2001, the Institute for Interlaboratory Studies organized a proficiency test for the analysis of Transformer Oil every year. It was decided to continue this interlaboratory study during the annual program 2012/2013. In this interlaboratory study, 60 laboratories from 28 different countries have participated. See appendix 2 for a list of number of participants per country order. In this report, the results of the 2012 interlaboratory study on unused transformer oil are presented and discussed.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. Analyses for fit-for-use and homogeneity testing were subcontracted. In this proficiency test, two different samples were used. The participants received a bottle of 1 litre of an unused Transformer Oil (labelled #12145) and a bottle of 100 mL of used oil (labelled #12146) especially for the analysis of Furanic compounds.

Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC 17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentially of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: 'Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission for the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

Transformer Oil: iis12L04 page 3 of 35

2.4 SAMPLES

The necessary bulk material (DIALA S2 ZU-I) for the unused oil sample #12145 was obtained from a local supplier. The approximately 80 litre bulk material was homogenised. After homogenisation, 70 subsamples were transferred to 1 litre amber glass bottles and labelled #12145. The homogeneity of the subsamples #12145 was checked by determination Density and Water on 8 stratified randomly selected samples.

	Water in mg/kg	Density @ 15°C in kg/m ³
Sample #12145-1	20	881.98
Sample #12145-2	22	881.97
Sample #12145-3	15	881.97
Sample #12145-4	14	881.97
Sample #12145-5	19	881.97
Sample #12145-6	16	881.97
Sample #12145-7	17	881.98
Sample #12145-8	15	881.98

Table 1: homogeneity test results of subsamples #12145

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the reference methods in agreement with the procedure of ISO 13528, Annex B2 in the next table.

	Water in mg/kg	Density @ 15°C in kg/m ³
r (Observed)	2	0.01
reference method	EN60814:98	ISO3675:98
0.3 * R (ref. method)	2	0.36

Table 2: repeatabilities of subsamples #12145

The necessary bulk material for additional sample #12146, was also obtained from a participating laboratory. This sample was spiked with a solution of furanic components up to a concentration of approx. one mg/kg for Furfurylalkohol as well as for 5-Methylfurfural. After homogenisation, the bulk material was transferred to 48 amber glass bottles of 100 mL and labelled #12146.

Each of the calculated repeatabilities was equal or less than 0.3 times the corresponding reproducibility of the reference method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories depending on the registration, 1*1 litre bottle (labelled #12145) and/or 1*100mL bottle (labelled #12146) was sent on October 24, 2012.

Transformer Oil: iis12L04 page 4 of 35

2.5 STABILITY OF THE SAMPLES

The stability of Transformer Oil, packed in the amber glass bottles, was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were asked to determine on sample #12145: Acid Number (Neutralization Number), Breakdown Voltage, Colour, Density @ 20 °C, Di-electric loss 90 °C (Di-electric Dissipation Factor and Specific Resistance), Interfacial Surface Tension and Water. On sample #12146 was asked to determine: Furanic Compounds (2-acetylfuran, 2-furfural, 2-furfurylalcohol, 5-hydroxymethyl-2-furfural and 5-methyl-2-furfural).

To get comparable results a detailed report form, on which the units were prescribed as well as some of the required standards and a letter of instructions were prepared and made available for download on the iis website (www.iisnl.com).

A SDS and a form to confirm receipt of the samples were added to the sample package

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered. The original data are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder fax was sent to the laboratories that had not reported results at that moment. Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation of the results should be used with due care.

Transformer Oil: iis12L04 page 5 of 35

In accordance to ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. When the uncertainty passed the evaluation no remarks are made in the report. However, when the uncertainty failed the evaluation it is mentioned in the report and it will have consequences for the evaluation of the test results.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for each determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation, to a set of data that avoids some problems associated with histograms (see appendix 3; nos.14 and 15).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. The target standard deviation was calculated from the literature reproducibility by division with 2.8. The z-scores were calculated in accordance with:

 $z_{\text{(target)}} = \text{(result - average of PT)} / \text{target standard deviation}$

The $z_{\text{(target)}}$ scores are listed in the result tables in appendix 1.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate the fit-for-useness of the reported test result.

Transformer Oil: iis12L04 page 6 of 35

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

| z | < 1good 1 < | z | < 2satisfactory 2 < | z | < 3questionable 3 < | z | unsatisfactory

4 **EVALUATION**

Some problems were encountered during the dispatch of the sample unused transformer oil sample #12145 and the sample #12146 "for furanics only" to Brasil, Saudi Arabia and Vietnam. In total twelve participants,reported results after the final reporting date and one participant did not report any results at all. Not all participants were able to report results for all tests. In total 59 participants reported 427 numerical results. Observed were 30 outlying results, which is 7.0% of the numerical results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

Not all original data sets proved to have a normal distribution. Not normal distributions were found for the following determinations on sample #12145: Density, Di-electric Dissipation Factor and Water. And on sample #12146 a not normal distribution was found on the determination 2-Furfurylalcohol. In these cases the statistical evaluations should be used with due care.

For the Furanic compounds the observed spreads were compared against the (strict) spreads estimated from the Horwitz equation. It is remarkable that the precision requirements of IEC 61198:94 are much smaller than precision data calculated using the Horwitz equation. In this section, the results are discussed per test.

The methods, which are used by the various laboratories, are taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in appendix 3.

Acid Number: This determination was not problematic. Three statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in good agreement with the requirements of ASTM D974:12.

Acid Number: No significant conclusions were drawn as the Acid Number was below the quantification limit (0.014 g KOH/kg) of the test method EN62021-1:03. Two statistical outliers were observed.

Transformer Oil: iis12L04 page 7 of 35

Acid Number:

No significant conclusions were drawn as the Acid Number

EN62021-2 was below the quantification limit (0.01 g KOH/kg) of the test method

EN62021-2:07.

Breakdown Voltage: This determination was very problematic. One statistical outlier was

observed. The calculated reproducibility, after rejection of the statistical outlier is not at all in agreement with the requirements of EN60156:98. The results may be divided in three groups (see the Kernel Density plot). Possible causes for this trimodal distribution may be one or more of the following: maybe the test was not performed on the sample as received (drying or degassing is not allowed); maybe contamination by water or particulate matters did take place and/or maybe the electrodes were not

properly maintained.

Colour: The majority of the laboratories agreed that the Colour is < 0.5 in

accordance with ASTM D1500:07.

<u>Density @ 20°C</u>: This determination was problematic for a number of laboratories. Six

statistical outliers were observed. The calculated reproducibility, after

rejection of the statistical outliers is in full agreement with the

requirements of ISO3675:98.

<u>DD-Factor:</u> This determination was not problematic. Two statistical outliers were

observed. However, the calculated reproducibility after rejection of the

statistical outliers is in good agreement with the requirements of

EN60247:04.

Interf. Surf. Tension: This determination was problematic. Three statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D971:12 and/or ISO6295:83. One should be aware that ISO6295 is obsolete

since February 2005.

Spec. Resistance: This determination was problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical

outlier is not in agreement with the estimated requirements of

EN60247:04.

Water: This determination was problematic. Three statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of EN60814:98.

2-Furfural: This determination was problematic. One statistical outlier was

observed. However, the calculated reproducibility after rejection of the statistical outlier is not in agreement with the estimated requirements

calculated using the Horwitz equation.

Transformer Oil: iis12L04 page 8 of 35

The test result of laboratory 398 was excluded prior to the statistical evaluation because the other three reported test results (for the other furanic components) of this laboratory appeared to be statistical outliers.

2-Furfurylalcohol:

This determination was very problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not at all in agreement with the estimated requirements calculated using the Horwitz equation.

5-Methyl-2-furfural:

This determination was not problematic. Two statistical outliers were observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the estimated requirements calculated using the Horwitz equation.

Other Furanics:

The concentrations of 2-Acetylfuran and 5-Hydroxymethyl-2-furfural were near or below the detection limit. Therefore no significant conclusions were drawn.

Transformer Oil: iis12L04 page 9 of 35

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The average results per sample, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM, ISO, EN and IEC standards) are compared in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Acid Number (ASTM D974)	g KOH/kg	27	0.007	0.013	0.040
Acid Number (EN62021-1)	g KOH/kg	21	0.006	0.008	(0.002)
Acid Number (EN62021-2)	g KOH/kg	6	0.003	0.005	(0.001)
Breakdown Voltage	kV/2.5 mm	53	50.02	28.47	16.51
Colour		33	< 0.5	n.a.	n.a.
Density @ 20 °C	kg/m ³	39	878.43	1.12	1.20
Di-electric Dissipation Factor		40	0.0025	0.0026	0.0043
Interfacial Surface Tension	mN/m	37	46.72	7.61	4.67
Specific Resistance	GΩm	29	324.8	518.5	341.1
Water	mg/kg	50	19.2	9.5	6.6

table 3: Performance of the group on sample #12145

^{() =} Results between brackets were near or below detection limit, these results should be used with care

Parameter	unit	n	average	2.8 * sd	R(lit)
* 2-furfural	mg/kg	19	0.021	0.028	0.017
* 2-furfurylalcohol	mg/kg	21	0.58	0.41	0.28
* 5-methyl-2-furfural	mg/kg	21	0.80	0.24	0.37
* 2-acetylfuran	mg/kg	24	<0.05	n.a.	n.a.
* 5-hydroxy-2-furfural	mg/kg	24	<0.05	n.a.	n.a.

table 4: Performance of the group on sample #12146

Without further statistical calculations, it can be concluded that for several tests there is a good compliance of the group of participating laboratories with the relevant standards or the rather strict calculated estimates using Horwitz. The problematic tests have been discussed in paragraph 4.1.

Transformer Oil: iis12L04 page 10 of 35

4.3 COMPARISON OF THE OCTOBER 2012 PROFICIENCY TEST WITH PREVIOUS PTS.

	October 2012	November 2011	November 2010	November 2009
Number of reporting labs	59	56	46	36
Number of results reported	427	378	289	348
Statistical outliers	30	27	18	21
Percentage outliers	7.0%	7.1%	6.2%	6.0%

table 5: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the target requirements. The conclusions are given the following table:

Parameter	October 2012	November 2011	November 2010	November 2009
Acid number (ASTM D974)	++	+	++	+
Acid number (EN62021-1)	()	n.e.	n.e.	n.e.
Acid number (EN62021-2)	()	n.e.	n.e.	n.e.
Breakdown Voltage				
Colour	n.e.	++	++	++
Density @ 20°C	+	-	+/-	++
Di-electric Dissipation Factor	++	++	++	++
Interfacial Surface Tension				
Specific Resistance	-			/++
Water	-	+		++
2-acetylfuran	n.e.	n.e.	n.e.	n.e.
2-furfural		+/-	+/-	-
2-furfurylalcohol		n.e.	n.e.	n.e.
5-hydroxy-2-furfural	n.e.	n.e.	n.e.	n.e.
5-methyl-2-furfural	++	n.e.	n.e.	n.e.

table 6: comparison determinations against the standard

() = Results between brackets were near or below detection limit, these results should be used with care

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

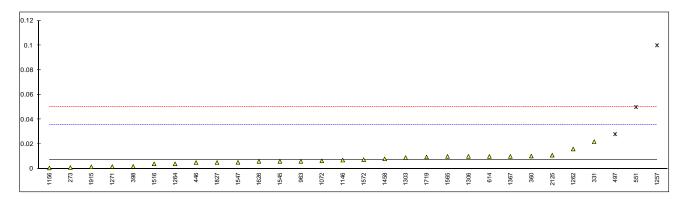
++: group performed much better than the standard

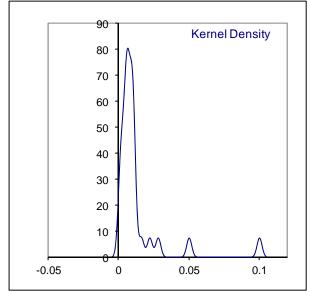
+ : group performed better than the standard

+/-: group performance equals the standard

- : group performed worse than the standard

-- : group performed much worse than the standard

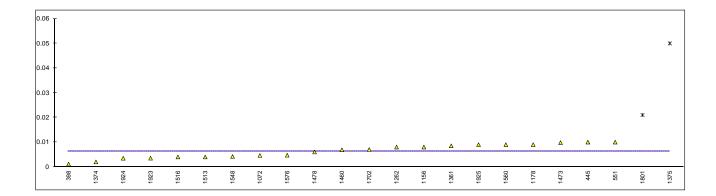

n.e: not evaluated

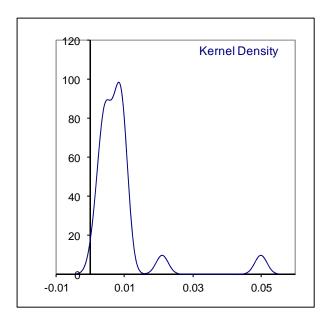

Transformer Oil: iis12L04 page 11 of 35

APPENDIX 1
Determination of Acid Number (ASTM D974) on sample #12145; results in g KOH/kg

lab	method	value	mark	z(targ)	Remarks
273	D974	0.001		-0.43	
331	D664	0.022		1.04	
360	D974	0.0103		0.22	
398	D974	0.0019		-0.37	
445					
446	D974	0.005		-0.15	
497	D974	0.028	G(0.01)	1.46	
551	D974	0.05	G(0.01)	3.00	
614	IEC60422	0.01		0.20	
963	D974	0.006		-0.08	
1056					
1072	INH-04	0.0064		-0.06	
1146	D664	0.007		-0.01	
1156	D974	0.0006		-0.46	
1178 1257	D974	0.1	G(0.01)	6.50	
1262	D974 D974	0.016	G(0.01)	0.62	
1264	D974	0.004		-0.22	
1271	D974	0.0018		-0.38	
1303	D974	0.009		0.13	
1304	INH-122	<0.01			
1306	in house	0.01		0.20	
1352					
1361					
1367	D974	0.01		0.20	
1373	D974	< 0.02			
1374					
1375					
1440					
1442	D974	0.008		0.06	
1458 1460	D974	0.006		0.06	
1461					
1463	D974	<0.01			
1471	D014				
1473					
1478					
1513					
1516	D974	0.004		-0.22	
1529					
1545	D974	0.006		-0.08	
1547	D974	0.0052		-0.14	
1548					
1560 1565	INH-2102	0.01		0.20	
1572	D664	0.00735		0.20	
1576	D004	0.00733			
1626	D974	0.006		-0.08	
1628	20				
1660					
1702					
1719	D664	0.0095		0.16	
1801					
1827	D664	0.005		-0.15	
1863	D974	<0.01			
1915	D974	0.0016		-0.39	
1923					
1924 1925					
2125	ISO6619	0.011		0.27	
	normality	OK 27			
	n outliers	3			
	mean (n)	0.00721			
	st.dev. (n)	0.004686			
	R(calc.)	0.01312			
	R(D974:12)	0.04000			

Transformer Oil: iis12L04 page 12 of 35




Transformer Oil: iis12L04 page 13 of 35

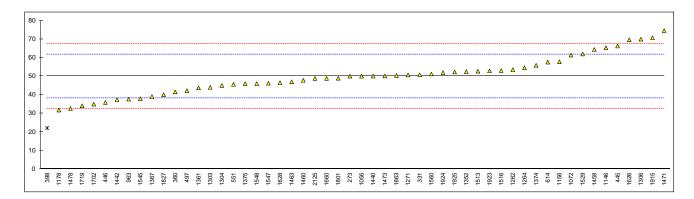
Determination of Acid Number (EN62021-1) on sample #12145; results in g KOH/kg

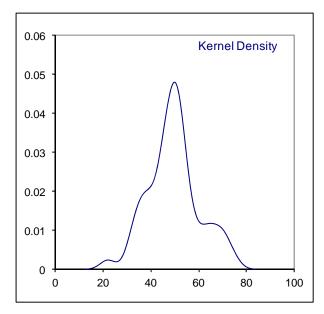
lab	method	value	mark	z(targ)	remarks
273					
331					
360 398	EN62021-1	0.0011			
445	EN62021-1	0.0011			
446					
497	B				
551	D664	0.01			
614 963					
1056					
1072	EN62021-1	0.0046			
1146 1156	EN62021-1	0.008			
1178	EN62021-1	0.009			
1257					
1262	EN62021-1	0.008			
1264 1271					
1303					
1304					
1306 1352					
1361	EN62021-1	0.0085			
1367					
1373	15000001.4				
1374 1375	IEC62021-1 EN62021-1	0.002 0.05	G(0.01)		false positive?
1440	IEC62021-1	<0.03	G(0.01)		laise positive:
1442					
1458	Dog 4				
1460 1461	D664	0.0069			
1463					
1471					
1473	IEC62021-1	0.0098			
1478 1513	IEC62021-1 IEC62021-1	0.0060 0.004			
1516	IEC62021-1	0.004			
1529	IEC62021-1	<0.01			
1545 1547					
1547	IEC62021-1	0.00418			
1560	IEC62021-1	0.009			
1565					
1572 1576	IEC62021-1	0.0047			
1626	12002021 1				
1628					
1660	IEC62021-1 IEC62021-1	<0.01 0.007			
1702 1719	IEC62021-1	0.007			
1801	EN62021-1	0.021	G(0.01)		false positive?
1827	=1100001				
1863 1915	EN62021-1	<0.01 			
1923	IEC62021-1	0.00350			
1924	EN62021-1	0.00347			
1925	EN62021-1	0.009			
2125					
	normality	OK 21			
	n outliers	2			
	mean (n)	0.0063			
	st.dev. (n)	0.00278			
	R(calc.) R(EN62021-1:03)	0.0078 (0.0018)			Quantification limit > 0.014 g KOH/kg
	. ((=1,02021-1.00)	(0.0010)			audition miner old it givering

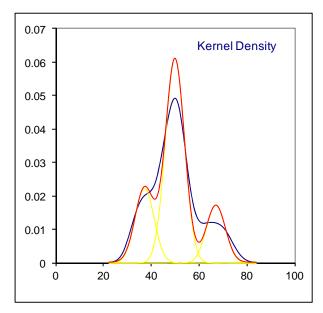
Transformer Oil: iis12L04 page 14 of 35

Transformer Oil: iis12L04 page 15 of 35

Determination of Acid Number (EN62021-2) on sample #12145; results in g KOH/kg


lab	method	Value	mark	z(targ)	remarks
273					
331					
360	EN100004.0				
398 445	EN62021-2	0.0009			
446					
497					
551					
614					
963					
1056	ENICO004 0				
1072 1146	EN62021-2	<0.01 			
1156					
1178					
1257					
1262					
1264					
1271 1303					
1304					
1306					
1352	IEC62021-2	0.00526			
1361					
1367					
1373 1374					
1375	EN62021-2	0.005			
1440	211020212				
1442	IEC62021-2	0.001			
1458					
1460					
1461 1463					
1471					
1473					
1478					
1513	IEC62021-2	0.004			
1516 1529	IEC62021-2	0.004			
1545					
1547					
1548	IEC62021-2	<0.01			
1560					
1565 1572					
1576					
1626					
1628					
1660					
1702 1719					
1801					
1827					
1863	EN62021-2	<0.01			
1915					
1923 1924					
1924					
2125					
-	normality	OK			
	n	6			
	outliers	0 0034			
	mean (n) st.dev. (n)	0.0034 0.00194			
	R(calc.)	0.00134			
	R(EN62021-2:07)	(0.0012)			Quantification limit > 0.01 g KOH/kg


Transformer Oil: iis12L04 page 16 of 35

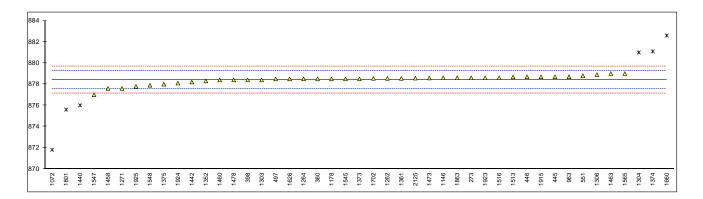

Determination of Breakdown Voltage on sample #12145, results in kV/2.5 mm

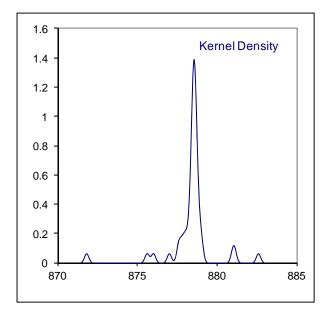
lab	method	value	mark	z(targ)	remarks
273	EN60156	50.0	mark	0.00	Tomaria
331	EN60156	50.7		0.00	
360	EN60156	41.5		-1.45	
398	EN60156	22.0	G(0.05)	-4.75	
445	EN60156	66.3	O (0.00)	2.76	
446	EN60156	35.8		-2.41	
497	EN60156	42.2		-1.33	
551	EN60156	45.6		-0.75	
614	IEC60156	57.6		1.29	
963	D877	37.6		-2.11	
1056	IP295	50		0.00	
1072	EN60156	61.4		1.93	
1146	IEC60156	65.3		2.59	
1156	EN60156	57.8		1.32	
1178	EN60156	31.7		-3.11	
1257					
1262	EN60156	53.5		0.59	
1264	EN60156	54.6		0.78	
1271	EN60156	50.67		0.11	
1303	IEC60156	44.0		-1.02	
1304	INH-124	45		-0.85	
1306	IEC60156	70		3.39	
1352	IEC60156	52.5		0.42	
1361	EN60156	43.7		-1.07	
1367	EN60156	39		-1.87	
1373					
1374	IEC60156	55.9		1.00	
1375	EN60156	46		-0.68	
1440	EN60156	50.05		0.00	
1442	IEC60156	37.3		-2.16	
1458	IEC60156	64.4		2.44	
1460	EN60156	47.8		-0.38	
1461	D4040	47		0.54	
1463	D1816	47 74 C		-0.51	
1471	IEC60156 IEC60156	74.6		4.17	
1473 1478	EN60156	50.1 32.5		0.01 -2.97	
1513	IEC60156	52.7		0.45	
1516	IEC60156	53.1		0.52	
1529	IEC60156	62		2.03	
1545	IEC60156	37.86		-2.06	
1547	EN60156	46.2		-0.65	
1548	IEC60156	46		-0.68	
1560	IEC60156	51.2		0.20	
1565					
1572					
1576					
1626	IEC60156	69.7		3.34	
1628	IEC60156	46.5		-0.60	
1660	IEC60156	48.8		-0.21	
1702	IEC60156	34.9		-2.56	
1719	IEC60156	34.02		-2.71	
1801	EN60156 IEC60156	48.9		-0.19 -1.70	
1827 1863	EN60156	40 50.4		0.06	
1915	IEC60156	70.75		3.52	
1923	EN60156	52.9		0.49	
1924	IEC60156	51.98		0.33	
1925	EN60156	52.3		0.39	
2125	EN60156	48.8		-0.21	
	normality	OK			
	n	53			
	outliers	1			
	mean (n)	50.02			
	st.dev. (n)	10.166			
	R(calc.)	28.47			
	R(EN60156:98)	16.51			

Transformer Oil: iis12L04 page 17 of 35

Transformer Oil: iis12L04 page 18 of 35

Determination of Colour on sample #12145;

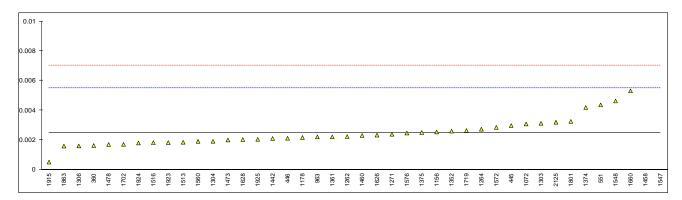

lab	method	value	mark	z(tara)	Remarks
273	D1500	<0.5	mark	z(targ)	nemark3
331	D1500 D1500	0.5			
360	D1500	<0.5			
398	D1500	<0.5			
445	D1500	<0.5			
446	D1500	<0.5			
497	D1500	0.1			
551	D1500	<0.5			
614	INH-830	straw			
963	D1500	<0.5			
1056					
1072	D1500	< 0.5			
1146					
1156	D1500	0.0			
1178	ISO2049	0.5			
1257					
1262	D1500	<0.5			
1264	D1500	<0.5			
1271	D1500	0.1			
1303	D1500	<0.5			
1304	INH-132	0.0			
1306	D1500	0			
1352					
1361					
1367 1373					
1373	D1524	<0.5			
1374	ISO2049	0.0			
1440	ISO2049	<0.5			
1442	D1500	<0.5			
1458	D1500	<0.5			
1460	D1500	0.5			
1461					
1463	D1500	0			
1471					
1473	D1500	<0.5			
1478	ISO2049	<0.5			
1513	ISO2049	<0.5			
1516	D1500	0			
1529	ISO2049	0			
1545	D1500	0.5			
1547	D1524	<0.5			
1548					
1560	ISO2049	0.5			
1565	D1500	0.5			
1572					
1576	D4500				
1626	D1500	<0.5 			
1628 1660	D1500	<0.1			
1702	D1500 D1500	0.0			
1702	D1500 D1524	<0.5			
1801	D1500	<0.5			
1827	2 1000				
1863	D1500	<0.5			
1915	D1500	<0.5			
1923	ISO2049	0.5			
1924	D6045	<0.5			
1925	ISO2049	0.5			
2125					
	normality	n.a			
	n	33			
	outliers	n.a			
	mean (n)	< 0.5			
	st.dev. (n)	n.a			
	R(calc.)	n.a			
	R(D1500:07)	n.a			

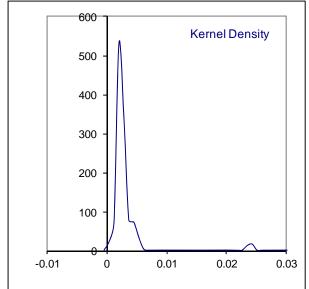

Transformer Oil: iis12L04 page 19 of 35

Determination of Density @20°C on sample #12145; results in kg/m³

lab	method	value	mark	z(targ)	Remarks	
273	D4052	878.6	mark	0.41		
331	D-1002					
360	D4052	878.5		0.17		
398	ISO3675	878.4		-0.06		
445	D4052	878.7		0.64		
446	D4052	878.7		0.64		
497	ISO3675	878.5		0.17		
551	D4052	878.8		0.87		
614	_					
963	D4052	878.7		0.64		
1056	1000075		0(0.04)	45.40		
1072	ISO3675	871.8	G(0.01)	-15.46		
1146 1156	ISO12185	878.60 		0.41		
1178	ISO12185	878.50		0.17		
1257	10012100					
1262	ISO3675	878.55		0.29		
1264	D4052	878.5		0.17		
1271	ISO3675	877.6		-1.93		
1303	D4052	878.4	С	-0.06	first reported: 0.8784	
1304	INH-120	881.0	G(0.01)	6.01		
1306	D1298	878.9		1.11		
1352	ISO12183	878.3		-0.29		
1361	ISO3675	878.55		0.29		
1367	INII I 007	070.5		0.47		
1373 1374	INH-007	878.5 881.1	C(0.05)	0.17 6.24		
1374	D7777 ISO3675	878	G(0.05)	-0.99		
1440	in house	876	G(0.05)	-5.66		
1442	D7042	878.20	G(0.00)	-0.53		
1458	D4052	877.6	С	-1.93	first reported: 874.6	
1460	D4052	878.4	Ċ	-0.06	probably unit error, reported: 0.8784	1
1461						
1463	D1298	879		1.34		
1471						
1473	D1217	878.58	С	0.36	first reported: 874.33	
1478	ISO12185	878.4		-0.06		
1513	ISO12185	878.686		0.61		
1516	ISO3675	878.6 		0.41		
1529 1545	ISO3675	878.5		0.17		
1547	D1298	877	С	-3.33	probably unit error, reported: 0.877	
1548	ISO3675	877.9	Č	-1.23	probably unit error, reported: 0.8779	9
1560			· ·		productly arms offers, reported of orders	
1565	D1298	879		1.34		
1572						
1576						
1626	ISO12185	878.5	С	0.17	probably unit error, reported: 0.8785	5
1628	D7040	000.0	0.0(0.04)	0.74	markable coult cours as a 1 0 000	
1660	D7042 ISO12185	882.6 878.547	C,G(0.01)	9.74	probably unit error, reported: 0.8826	0
1702 1719	13012103	070.347		0.28		
1801	ISO3675	875.6	G(0.05)	-6.59		
1827	.000070		C(0.00)	-0.55		
1863	D4052	878.6		0.41		
1915	D4052	878.7		0.64		
1923	ISO3675	878.6		0.41		
1924	ISO3675	878.10		-0.76		
1925	ISO3675	877.8		-1.46		
2125	ISO12185	878.57		0.34	0 1 100 10 10 10 10 10	0 1 100 00==
	Pr	014			Only ISO12185/D4052	Only ISO 3675
	normality	not OK			not OK	not OK
	n outliers	39 6			20	12
	outliers mean (n)	6 878.425			0 878.515	2 878.258
	st.dev. (n)	0.4005			0.25101	0.3573
	R(calc.)	1.121			0.703	1.000
	R(ISO3675:98)	1.200			0.500	1.200
	` '					

Transformer Oil: iis12L04 page 20 of 35

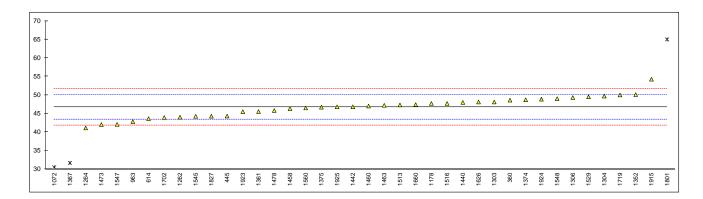


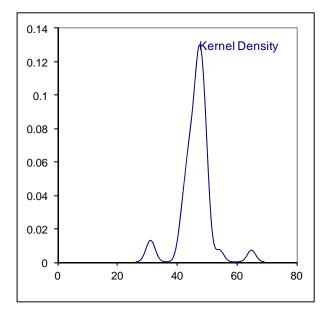

Transformer Oil: iis12L04 page 21 of 35

Determination of Di-electric Dissipation Factor on sample #12145;

	remarks					
		z(targ)	mark	value	method	273
				0.00400	ENCO047	331
		-0.55 		0.00162	EN60247	360 398
		0.34		0.00297	EN60247	445
		-0.22		0.00211	EN60247	446
						497
		1.25 		0.00436	EN60247	551 614
		-0.17		0.0022	D924	963
						1056
		0.40		0.00307	EN60247	1072
		0.05		0.00253	EN60247	1146 1156
		-0.19		0.00216	EN60247	1178
						1257
		-0.15		0.00222	IEC60247	1262
		0.18 -0.05		0.002722 0.00238	EN60247 EN60247	1264 1271
		-0.36		0.001905	INH-125	1304
		-0.56		0.00159	IEC60247	1306
					EN60247	
		1.14		0.00419	IEC60247	1374
		0.03		0.0025	EN60247	1375
					IEC60247	
			G(0.01)			
		-0.10	0(0.01)	0.0023	EN60247	1460
						1461
					D974	
					IFC60247	
		-0.50		0.001690	EN60247	1478
		-0.40		0.00184	IEC60247	1513
					IEC60247	
		134.91	G(0.01)	0.2088	D924	1547
33	first reported: 4.63	1.42	C` ´	0.004625	IEC60247	1548
					IEC60247	
					IEC60247	
		0.00		0.00246	IEC60247	
		-0.09		0.0023185	IEC60247	1626
		0.52		0.00325	EN60247	1801
				0.00450	EN00047	1827
		-0.43		0.00179	EN60247	1924
		-0.27		0.00204	EN60247	1925
		0.48		0.00319	EN60247	2125
				not OK	normality	
				40	n	
				2	outliers	
					, ,	
				0.004283	R(EN60247:04)	
33	first reported: 4.63	-0.56 0.09 -0.16 1.14 0.03 -0.23 13.98 -0.100.30 -0.50 -0.40 -0.42 134.91 1.42 -0.36 0.26 0.00 -0.09 -0.28 1.87 -0.49 0.12 0.520.57 -1.28 -0.41 -0.43	G(0.01) G(0.01) C	0.00159 0.00259 0.002202 0.0021 0.002383 0.0023 <0.001 0.001992 0.001690 0.00184 0.00181 0.2088 0.004625 0.0019 0.002846 0.00246 0.0023185 0.00203 0.00531 0.001698 0.00263 0.00325 0.00158 0.00263 0.00325 0.00158 0.0005 0.00182 0.00179 0.00204 0.00319 not OK 40 2 0.002454 0.0009144 0.002560	IEC60247 IEC	1306 1352 1361 1367 1373 1374 1375 1440 1442 1458 1460 1461 1463 1471 1473 1516 1529 1545 1547 1548 1560 1565 1572 1576 1628 1660 1702 1719 1801 1827 1863 1915 1923 1924

Transformer Oil: iis12L04 page 22 of 35

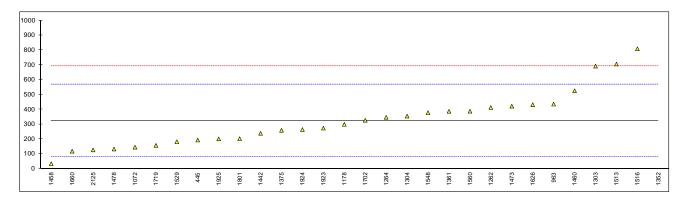


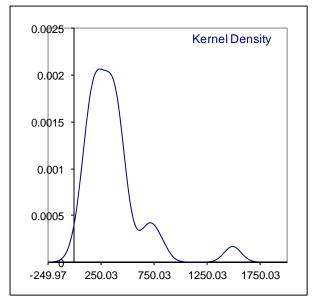

Transformer Oil: iis12L04 page 23 of 35

Determination of Interfacial Surface Tension on sample #12145; results in mN/m

lab	method	value	mark	z(targ)	remarks
273					
331	D074	40.0		4.40	
360 398	D971	48.6 		1.13	
445	D971	44.3		-1.45	
446					
497					
551 614	ISO6295	43.6	С	 -1.87	first reported: 56.8
963	D971	42.8	Ü	-2.35	macroportod. oo.o
1056					
1072	ISO6295	30.48	G(0.01)	-9.73 	
1146 1156					
1178	D971	47.7		0.59	
1257					
1262	D971	44.0		-1.63	
1264 1271	ISO6295	41.1 		-3.37 	
1303	D971	48.1		0.83	
1304	INH-123	49.7		1.79	
1306	D971	49.3		1.55	
1352 1361	D971 D971	50.1 45.5060		2.02 -0.73	
1367	ISO6295	31.65	G(0.01)	-9.03	
1373	_		, ,		
1374	D2285	48.7		1.19	
1375 1440	ISO6295 ISO6295	46.7 47.99		-0.01 0.76	
1442	EN14210	46.8		0.05	
1458	D971	46.3		-0.25	
1460	D971	47.0 		0.17	
1461 1463	D971	47.2		0.29	
1471					
1473	D971	42		-2.83	
1478 1513	D971 D971	45.8 47.3		-0.55 0.35	
1516	D971	47.3 47.7		0.59	
1529	D971	49.5		1.67	
1545	D971	44.24		-1.49	
1547 1548	D971 ISO6295	42.0373 49		-2.81 1.37	
1560	D971	46.5		-0.13	
1565					
1572					
1576 1626	ISO6295	48.1		0.83	
1628	.000200				
1660	D971	47.4		0.41	
1702 1719	ISO6295 D2285	43.932 50		-1.67 1.96	
1801	ISO6295	65.0	G(0.01)	10.95	
1827	D971	44.27	c` ´	-1.47	first reported: 36.05
1863	D074	 5.4.05		4.54	
1915 1923	D971 ISO6295	54.25 45.5		4.51 -0.73	
1924	D971	48.86		1.28	
1925	D971	46.8		0.05	
2125					
	normality	OK			
	n	37			
	outliers	3			
	mean (n)	46.721			
	st.dev. (n) R(calc.)	2.7180 7.610			
	R(ISO6295:83)	4.672			
	R(D971:12)	4.672			

Transformer Oil: iis12L04 page 24 of 35

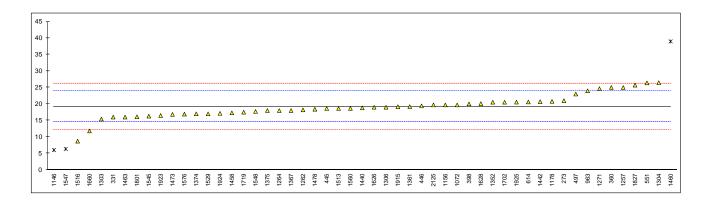


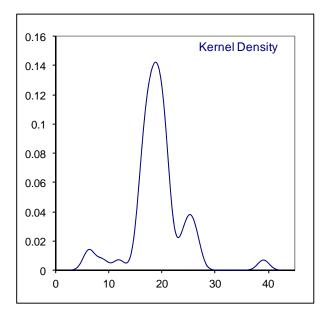

Transformer Oil: iis12L04 page 25 of 35

Determination of Specific Resistance on sample #12145; results in $\mbox{G}\Omega\mbox{m}$

lab	method	value	mark	z(targ)	Remarks
273					
331 360					
398					
445	EN60247	192.3		-1.09	
446 407					
497 551					
614					
963	D1169	434.9		0.90	
1056 1072	EN60247	144		 -1.48	
1146	21100211				
1156	=				
1178 1257	EN60247	298.2		-0.22	
1262	IEC60247	412.4		0.72	
1264	EN60247	346.41	С	0.17	probably unit error, reported: 3.4641E+11
1271	IEC00047			2.04	
1303 1304	IEC60247 INH-125	691.4 354.09		3.01 0.24	
1306					
1352	IEC60247	1489	G(0.01)	9.56	
1361 1367	EN60247	386.39		0.51	
1373					
1374					
1375 1440	EN60247	258.14		-0.55 	
1440	IEC60247	238.0		-0.71	
1458	IEC60247	32.99		-2.40	
1460	EN60247	525.4		1.65	
1461 1463					
1471					
1473	IEC60247	421		0.79	
1478 1513	EN60247 IEC60247	131.69 705.3		-1.59 3.12	
1516	IEC60247	808.8		3.97	
1529	IEC60247	181		-1.18	
1545 1547					
1548	IEC60247	377.025		0.43	
1560	IEC60247	387.1		0.51	
1565 1572					
1572					
1626	IEC60247	431.0		0.87	
1628 1660	IEC60247	 117.1		 -1.71	
1702	IEC60247	326.0		0.01	
1719	IEC60247	156.25	С	-1.38	probably unit error, reported: 1.5625E11
1801 1827	EN60247	201.5		-1.01 	
1863					
1915					
1923	EN60247	272.8		-0.43	
1924 1925	EN60247 EN60247	263.4 200.0		-0.50 -1.02	
2125	EN60247	125.55		-1.64	
	normality	OK			
	n	29			
	outliers	1			
	mean (n) st.dev. (n)	324.82 185.190			
	R(calc.)	518.53			
	R(EN60247:04)	341.06			

Transformer Oil: iis12L04 page 26 of 35

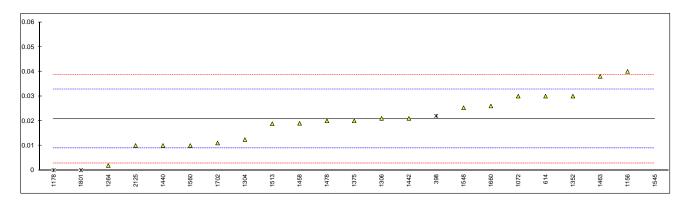


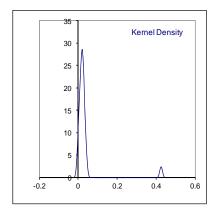

Transformer Oil: iis12L04 page 27 of 35

Determination of Water on sample #12145; results in mg/kg

lab	method	value	mark	z(targ)	remarks
273	EN60814	21	mark	0.77	Tomarko
331	D6304	16.0		-1.36	
360	IEC60814	25.0		2.48	
398	EN60814	20.0		0.35	
445	EN60814	18.6		-0.25	
446	EN60814	19.4		0.09	
497	EN60814	23		1.63	
551	EN60814	26.38		3.07	
614	IEC60814	20.6		0.60	
963	D1533	24		2.05	
1056	ENICODA A	40.7		0.00	
1072 1146	EN60814 D6304C	19.7 6	DG(0.01)	0.22 -5.62	
1156	EN60814	19.7	DG(0.01)	0.22	
1178	EN60814	20.8		0.69	
1257	EN60814	25		2.48	
1262	EN60814	18.2		-0.42	
1264	EN60814	18		-0.505	
1271	EN60814	24.65	С	2.33	first reported: 32.95
1303	IEC60814	15.4		-1.61	
1304	INH-121	26.45		3.10	
1306	IEC60247	19		-0.08	
1352	IEC60814	20.53		0.57	
1361	EN60814	19.2		0.01	
1367	D4928	18	0	-0.51	Continuo anta di O.A. O
1373	INH-94 IEC60814	<100	С	0.02	first reported:31.6
1374	EN60814	17.0		-0.93 -0.51	
1375 1440	EN60814	18 18.8		-0.51	
1442	IEC60814	20.7		0.65	
1458	D1533	17.3		-0.80	
1460	EN60814	39.0	G(0.01)	8.44	
1461			, ,		
1463	D1533	16		-1.36	
1471					
1473	IEC60814	16.83		-1.00	
1478	EN60814	18.4		-0.33	
1513	IEC60814	18.6		-0.25	
1516	IEC60814	8.7		-4.47	
1529 1545	IEC60814 IEC60814	17 16.30		-0.93 -1.23	
1547	D1533	6.34	DG(0.01)	-5.47	
1548	EN60814	17.7	DO(0.01)	-0.63	
1560	IEC60814	18.666		-0.22	
1565					
1572					
1576	IEC60814	16.9		-0.97	
1626	IEC60814	19.0		-0.08	
1628	IEC60814	20.1		0.39	
1660	IEC60814	11.8		-3.15	
1702 1719	IEC60814 IEC60814	20.53 17.5		0.57 -0.72	
1801	EN60814	16.1		-1.31	
1827	D6304	25.7		2.78	
1863	D0004				
1915	D1533	19.16		-0.01	
1923	EN60814	16.5		-1.14	
1924	EN60814	17.14		-0.87	
1925	EN60814	20.55		0.58	
2125	IEC60814	19.69		0.21	
	normality	not OK			
	n	50			
	outliers	3			
	mean (n)	19.186			
	st.dev. (n)	3.3940			
	R(calc.)	9.503			
	R(EN60814:98)	6.570			

Transformer Oil: iis12L04 page 28 of 35

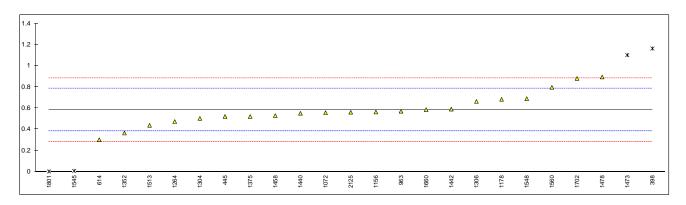


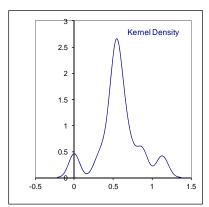


Transformer Oil: iis12L04 page 29 of 35

Determination of 2-Furfural on sample #12146; results in mg/kg

lab	method	Value	mark	z(targ)	remarks
398	IEC61198	0.022	ex	0.21	result excluded, see § 4.1
445	IEC61198	<0.05			
614	IEC61198	0.03		1.55	
963	D5837	<0.01		<-1.90	
1072	EN61198	0.030		1.55	
1156	IEC61198	0.040		3.23	
1178	IEC61198	0.000	ex	-3.49	result excluded, zero is not a real value
1264	D5837	0.0019	С	-3.17	probably unit error, reported: 19
1304	INH-126	0.0124		-1.40	
1306	IEC61198	0.021		0.04	
1352	IEC61198	0.03		1.55	
1367					
1375	IEC61198	0.02		-0.13	
1430					
1440	IEC61198	0.01		-1.81	
1442	IEC61198	0.021		0.04	
1458	IEC61198	0.019		-0.30	
1463	D5837	0.038		2.90	
1473	IEC61198	<0.03			
1478	IEC61198	0.020		-0.13	
1513	IEC61198	0.0188		-0.33	
1516	.=0000				
1529	IEC61198	<0.1	0.0(0.01)		
1545	IEC61198	0.4248	C, G(0.01)	67.89	first reported: 0.5417
1548	IEC61198	0.0253		0.76	
1560	IEC61198	0.01		-1.81	
1660	IEC61198	0.026		0.88	
1702	IEC61198	0.011		-1.64	
1801	IEC61198	0.000	ex	-3.49	result excluded, zero is not a real value
2125	IEC61198	0.01		-1.81	
	normality	ОК			
	n	19			
	outliers	1			
	mean (n)	0.0208			
	st.dev. (n)	0.01013			
	R(calc.)	0.0284			
	R(Horwitz)	0.0167			Compare R(IEC61198:94) = 0.0031 mg/kg
	. ,				, ,

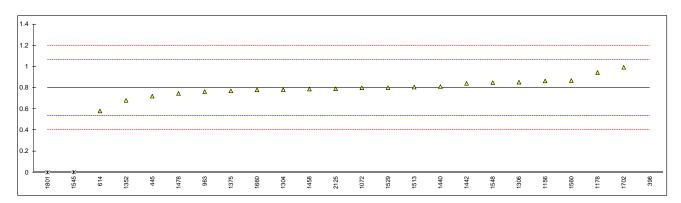


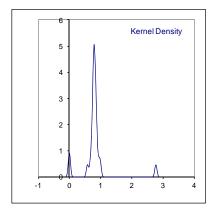


Transformer Oil: iis12L04 page 30 of 35

Determination of 2-Furfurylalcohol on sample #12146; results in mg/kg

lab	method	Value	mark	z(targ)	remarks
398	IEC61198	1.162	G(0.05)	5.75	
445	IEC61198	0.52		-0.61	
614	IEC61198	0.30		-2.79	
963	D5837	0.569		-0.12	
1072	EN61198	0.556		-0.25	
1156	IEC61198	0.562		-0.19	
1178	IEC61198	0.682	_	1.00	
1264	D5837	0.472	С	-1.08	probably unit error, reported: 472
1304	INH-126	0.5016		-0.79	
1306	IEC61198	0.661846	0	0.80	first reported to d
1352	IEC61198	0.3630	С	-2.16 	first reported: n.d.
1367 1375	IEC61198	0.52		-0.61	
1430	15001190	0.52		-0.61	
1440	IEC61198	0.55		-0.31	
1440	IEC61198	0.589		0.07	
1458	IEC61198	0.528		-0.53	
1463	12001130	0.520			
1473	IEC61198	1.10	G(0.05)	5.14	
1478	IEC61198	0.893	O (0.00)	3.09	
1513	IEC61198	0.4363		-1.44	
1516					
1529	IEC61198	<0.1		<-4.45	false negative?
1545	IEC61198	0.0057	C,G(0.05)	-5.70	first reported, 0.0080
1548	IEC61198	0.6884	, , ,	1.06	,
1560	IEC61198	0.795		2.12	
1660	IEC61198	0.585		0.03	
1702	IEC61198	0.879		2.95	
1801	IEC61198	0.000	ex	-5.76	result excluded, zero is not a real value
2125	IEC61198	0.56		-0.21	
	normality	not OK			
	n	21			
	outliers	3			
	mean (n)	0.5815			
	st.dev. (n)	0.14810			
	R(calc.)	0.4147			O
	R(Horwitz)	0.2827			Compare R(IEC61198:94) = 0.090 mg/kg





Transformer Oil: iis12L04 page 31 of 35

Determination of 5-Methyl-2-furfural on sample #12146; results in mg/kg

lab	method	value	mark	z(targ)	remarks
398	IEC61198	2.771	G(0.01)	14.87	
445	IEC61198	0.72		-0.61	
614	IEC61198	0.58		-1.67	
963	D5837	0.763		-0.29	
1072	EN61198	0.799		-0.01	
1156	IEC61198	0.864		0.48	
1178	IEC61198	0.943		1.07	
1264	D5837	<1			
1304	INH-126	0.7818		-0.14	
1306	IEC61198	0.852183		0.39	
1352	IEC61198	0.68		-0.91	
1367					
1375	IEC61198	0.77		-0.23	
1430					
1440	IEC61198	0.81		0.07	
1442	IEC61198	0.841		0.30	
1458	IEC61198	0.787		-0.11	
1463					
1473	IEC61198	< 0.03		<-5.82	false negative?
1478	IEC61198	0.745		-0.42	
1513	IEC61198	0.8054		0.03	
1516					
1529	IEC61198	0.80		-0.01	
1545	IEC61198	0.0011	C,G(0.01)	-6.04	first reported: 0.0000
1548	IEC61198	0.8482		0.36	
1560	IEC61198	0.867		0.50	
1660	IEC61198	0.780		-0.16	
1702	IEC61198	0.993		1.45	
1801	IEC61198	0.000	ex	-6.04	result excluded, zero is not a real value
2125	IEC61198	0.79		-0.08	
	normality	ОК			
	n	21			
	outliers	2			
	mean (n)	0.8009			
	st.dev. (n)	0.08620			
	R(calc.)	0.2414			
	R(Horwitz)	0.3710			Compare IEC61198:94 = 0.1201 mg/kg

Transformer Oil: iis12L04 page 32 of 35

Determination of other Furanic compounds on sample #12146; results in mg/kg

lab	method	2-af	mark	z(targ)	5-hm-2-f	mark	z(targ)
398	IEC61198	0.098	G(0.05)		0.023		
445	IEC61198	< 0.05			< 0.05		
614	IEC61198	<0.01			<0.01		
963	D5837	<0.01			<0.01		
1072	EN61198	<0.01			<0.01		
1156	IEC61198	<0.05			<0.05		
1178	IEC61198	0.012			0.011		
1264	D5837	0.0674	G(0.05)		<1		
1304	INH-126	<0.01			<0.01		
1306	IEC61198	<0.03			<0.03		
1352	IEC61198	n.d.			n.d.		
1367	15004400						
1375	IEC61198	<0.03			< 0.03		
1430	IECC4400						
1440	IEC61198	<0.01			<0.01		
1442	IEC61198	<0.01			<0.01		
1458 1463	IEC61198	<0.01			<0.01		
1473	IEC61198	<0.03			<0.03		
1473	IEC61198	<0.03			<0.03		
1513	IEC61198	<0.01			<0.01		
1516	12001190	<0.03 					
1529	IEC61198	<0.1			<0.1		
1545	IEC61198	0.0014			0.0036	C, first reported: 0.0690	
1548	IEC61198	0.0004			0.0004	o, mai reported. 0.0000	
1560	IEC61198	n.d.			0.003		
1660	IEC61198	<0.01			<0.01		
1702	IEC61198	n.d.			n.d.		
1801	IEC61198	0.000			0.671	G(0.01)	
2125	IEC61198	0			0		
	normality	n.a.			n.a.		
	n	24			25		
	outliers	2			1		
	mean (n)	< 0.05			< 0.05		
	st.dev. (n)	n.a.			n.a.		
	R(calc.)	n.a.			n.a.		
	R(Horwitz)	n.a.			n.a.		

Abbreviations: 2-af

5-hm-2-f

= 2-acetylfuran = 5-hydroxymethyl-2-furfural = corrected, first reported result for lab 1545 = 0.0690

Transformer Oil: iis12L04 page 33 of 35

APPENDIX 2

Number of participants per country

- 6 labs in AUSTRALIA
- 1 lab in BELGIUM
- 1 lab in BOSNIA and HERZEGOVINA
- 1 lab in BRAZIL
- 7 labs in BULGARIA
- 1 lab in CANADA
- 1 lab in CROATIA
- 1 lab in ESTONIA
- 3 labs in FRANCE
- 2 labs in GERMANY
- 2 labs in ITALY
- 1 lab in KINGDOM OF BAHRAIN
- 1 lab in KOREA
- 3 labs in MALAYSIA
- 1 lab in NEW ZEALAND
- 1 lab in NORWAY
- 3 labs in PORTUGAL
- 4 labs in SAUDI ARABIA
- 1 lab in SERBIA
- 1 lab in SLOVENIA
- 2 labs in SOUTH AFRICA
- 4 labs in SPAIN
- 1 lab in SWEDEN
- 2 labs in THE NETHERLANDS
- 2 labs in TURKEY
- 2 labs in U.A.E.
- 3 labs in UNITED KINGDOM
- 2 labs in VIETNAM

Transformer Oil: iis12L04 page 34 of 35

APPENDIX 3

Abbreviations:

C = final result after checking of first reported suspect result
C(0.01) = outlier in Cochran's outlier test

C(0.05) = straggler in Cochran's outlier test

D(0.01) = outlier in Dixon's outlier test
D(0.05) = straggler in Dixon's outlier test
G(0.01) = outlier in Grubbs' outlier test
G(0.05) = straggler in Grubbs' outlier test

DG(0.01) = outlier in Double Grubbs' outlier test
DG(0.05) = straggler in Double Grubbs' outlier test

ex = excluded from calculations

n.a. = not applicablen.e = not evaluated

W = withdrawn on request participant

U = reported in a deviating unit

E = error in calculations
SDS = Safety Data Sheet
fr. = first reported

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 prNEN 12766-2:2001
- 3 ASTM E178-02
- 4 ASTM E1301-03
- 5 ISO 5725-86
- 6 ISO 5725, parts 1-6, 1994
- 7 ISO13528-05
- 8 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 9 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 10 IP 367/96
- 11 DIN 38402 T41/42
- 12 P.L. Davies, First reported Z. Anal. Chem, <u>331</u>, 513, (1988)
- 13 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 14 Analytical Methods Committee Technical Brief, No4 January 2001
- The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M.

Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)

Transformer Oil: iis12L04 page 35 of 35