Results of Proficiency Test Natural Gas Analysis April 2011

Organised by:Institute for Interlaboratory Studies
Spijkenisse, the NetherlandsAuthor:dr. R.G. Visser
Corrector:Corrector:mr. I. Kooren & ing. R. Starink
iis11S01M

June 2011

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST/COMPONENT	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	COMPARISON OF THE PROFICIENCY TEST OF APRIL 2011 WITH PREVIOUS PTS	9
4.4	DISCUSSION	10

Appendices:

1.	Data and statistical results	12
2.	Details of the GC configurations used	23
3.	Number of participants per country	24
4.	Abbreviations and literature	25

1 INTRODUCTION

A first proficiency study for natural gas (composition only) was organised by iis in 2009. Afterwards the opinion of the participating laboratories was inventarised. Most participants were very positive and therefore it was decided to repeat the PT in 2010 and 2011.

Because iis has limited gas-handling facilities in place to prepare gas samples, a cooperation with Scott Specialty Gases (Breda, the Netherlands) was set up. This company is fully equipped and has a broad experience in the preparation of synthetic natural gas samples for PT purposes. Scott Specialty Gases maintains an ISO17025 accreditation for the preparation of PT samples in homogeneous and stable batches and the analytical testing of these samples.

In this interlaboratory study 36 laboratories from 23 different countries participated. See appendix 3 for the number of participants in per country.

In this report the results of the proficiency test on natural gas are presented and discussed.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test.

To optimise the costs for the participating laboratories, it was decided to prepare one natural gas mixture. Samples were divided over a batch of 42 cylinders. The cylinder size is a cost-effective one-litre cylinder. Each cylinder was uniquely numbered. The limited cylinder size is chosen to optimise transport and handling costs.

Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO guide 43, ISO17043:2010 and ILAC-G13:2007. This ensures 100% confidentially of participant's data. Also customer's satisfaction is measured on regular basis by the distribution of questionnaires.

Scott Specialty Gases Netherlands B.V is accredited for the preparation and testing of Natural Gas mixtures in accordance with ISO/IEC 17025, (K064) by the Dutch Accreditation Council RvA (Raad voor Accreditatie).

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

2.3 CONFIDENTIALITY STATEMENT

All data present in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

In this proficiency test only one sample was used. A batch of one litre cylinders with artificial natural gas mixture was prepared and tested for homogeneity by Scott Specialty Gases (Breda, the Netherlands) in conformance with ISO 6143 and ISO Guide 35. One batch of 42 cylinders was prepared (lot 82390) starting March 3, 2011. Each cylinder was uniquely numbered. The cylinders were all tested in fivefold to check the homogeneity of the batch. From ANOVA analysis on the test results in accordance with ISO 6143 the in-between bottle standard deviation was calculated. The repeatability values (r) were calculated per component by multiplication of the respective standard deviation by 2.8. Subsequently, the calculated repeatabilities were compared with 0.3 times the reproducibility of the reference method in agreement with the procedure of ISO 13528, Annex B2 in the next table:

Parameter	r (abs, observed) in %mol/mol	0.3xR (abs, ISO6974-3) in %mol/Imol	r (abs, ISO6974-3) in %mol/Imol
Ethane	0.026	0.027	0.030
Propane	0.033	0.023	0.025
n-Butane	0.0054	0.0053	0.0089
iso-Butane	0.0031	0.0036	0.0060
Carbon dioxide	0.022	0.014	0.015
Nitrogen	0.027	0.027	0.030

Table 1: evaluation of homogeneity test results against ISO6974-3 requirements

From the above table it is clear that most repeatability values are less than 0.3 times the respective reproducibility of the reference method ISO6974-3 as well as less less than than the respective repeatability of the reference method ISO6974-3.

Therefore, the homogeneity of the prepared cylinders was assumed.

To each of the participating laboratories one 1L gas cylinder was sent on April 6, 2011.

2.5 STABILITY OF THE SAMPLES

Scott Specialty Gases (Breda, the Netherlands) declares that the prepared gas cylinders have a shelf life of at least 6 months. This is sufficient for the proficiency testing purposes.

2.6 ANALYSES

The participants were asked to determine: Methane, Ethane, Propane, n-Butane, iso-Butane, Carbon dioxide, Nitrogen, Caloric Value (sup), Density, Relative Density and Wobbe index. Also some method details were requested to be reported. To get comparable results a detailed report form, on which the units were prescribed, was sent together with each set of samples. Also a letter of instructions and a SDS were added to the package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were gathered. The original results are tabulated per determination in the appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected data are put under 'Remarks' in the result tables in appendix 1. Results that came in after deadline were not taken into account in the screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation.

First the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers this check was repeated. In case a data set does not have a normal distribution, the results of the statistical evaluation should be used with due care.

In accordance with ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test and by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test and by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of the averages and the standard deviations.

Finally the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. (see appendix 4; nr.13 and 14).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This target standard deviation was calculated from the literature reproducibility by division with 2.8. The z-scores were calculated according to:

z(target) = (result - average of PT) / target standard deviation

The z(target) scores are listed in the result tables in appendix 1. Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore the usual interpretation of z-scores is as follows:

|z| < 1 good 1 < |z| < 2 satisfactory 2 < |z| < 3 questionable 3 < |z| unsatisfactory

4 EVALUATION

In this proficiency test several problems were encountered with customs clearance. In total nine laboratories reported results after the final reporting date and three participants were not able to report any test results.

In total 33 participants reported 330 numerical results.

Observed were 16 outlying results, which is 4.8% of the numerical results. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST/COMPONENT

In this section the results are discussed per component. The methods, that were used by the participating laboratories, were taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in appendix 3. Not all original data sets proved to have a normal distribution. Non-Gaussian distributions were found for the following parameters: Methane, caloric value, density, rel. density and Wobbe index. In these cases the statistical evaluation should be used with due care, see also paragraph 4.4.

All test results reported by laboratory 529 were deviating, influenced by the very high nbutane and nitrogen results. Five of the seven test results appeared to be statistical outliers. As the seven test results are not independent, it was decided not to use any of the test results of this laboratory for the statistical evaluation.

- <u>Methane</u>: The determination of this component is very problematic. Two statistical outliers were detected and the calculated reproducibility after exclusion of the statistical outliers, is not in agreement with the requirements of ISO6974-3:2000, nor with ASTM D1945:2003.
- Ethane: The determination of this component was not problematic. Only one statistical outlier was detected. And the calculated reproducibility after exclusion of the statistical outlier, is in good agreement with the requirements of both ISO6974-3:2000 and ASTM D1945:2003.
- Propane:The determination of this component may be problematic for a number
of participating laboratories, depending on the test method used by the
laboratory. Only one statistical outlier was detected.
The calculated reproducibility after exclusion of the statistical outlier, is
not in agreement with the strict requirements of ISO6974-3:2000.
However, the calculated reproducibility is in full agreement with the
requirements of and ASTM D1945:2003.
- <u>n-Butane</u>: The determination of this component may be problematic for a number of participating laboratories, depending on the test method used by the

laboratory. Remarkably, three laboratories initially did mix-up the test results of n-butane and i-butane.

Three statistical outliers were detected. The calculated reproducibility after exclusion of the statistical outliers, is not (but almost) in agreement with the strict requirements of ISO6974-3:2000. However, the calculated reproducibility is in full agreement with the requirements of and ASTM D1945:2003.

<u>i-Butane</u>: The determination of this component may be problematic for a number of participating laboratories, depending on the test method used by the laboratory. Remarkably, three laboratories initially did mix-up the test results of n-butane and i-butane.

No statistical outliers were observed. The calculated reproducibility is not in agreement with the strict requirements of ISO6974-3:2000. However, the calculated reproducibility is in full agreement with the requirements of and ASTM D1945:2003.

<u>Carbon Dioxide</u>: The determination of this component may be problematic for a number of participating laboratories, depending on the test method used by the laboratory.

Three statistical outliers were detected. The calculated reproducibility after exclusion of the statistical outliers, is not in agreement with the strict requirements of ISO6974-3:2000. However, the calculated reproducibility is in full agreement with the requirements of and ASTM D1945:2003.

- <u>Nitrogen</u>: The determination of this component is problematic. Four statistical outliers were detected and the calculated reproducibility after exclusion of the statistical outliers, is not in agreement with the requirements of ISO6974-3:2000, nor with ASTM D1945:2003.
- <u>Caloric Value</u>: This calculated parameter is problematic. The reported results vary over a large range from 37.0 up to 40.879 MJ/m³ and can be divided in two groups. No correlation with the methane concentration can be found. Probably not all results were reported using the requested conditions, being 25°C and 101.325 KPa. See also the discussion in 4.4.
- <u>Density</u>: This calculated parameter is problematic. The reported results vary over a large range from 0.742073 up to 0.8136 kg/m³ and can be divided in two groups. No correlation can be seen with the methane concentration. Probably not all results were reported using the requested conditions, being 25°C and 101.325 KPa. See also the discussion in 4.4.
- <u>Rel. density</u>: This calculated parameter is problematic. The results vary over a large range from 0.619 up to 0.6466. Probably not all results were reported

using the requested conditions, being 25°C and 101.325 KPa. See also the discussion in 4.4.

Wobbe index:This calculated parameter is problematic. The reported results vary over
a large range from 46.05 up to 51.58 MJ/m³ and can be divided in two
groups. No correlation can be seen with the methane concentration.
Probably not all results were reported using the requested conditions,
being 25°C and 101.325 KPa. See also the discussion in 4.4.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

The average results per component, observed reproducibilities and target reproducibilities, derived from the standard methods ISO 6974-3 and ASTM D1945 are compared in the next table.

	unit	n	cons. value	2.8 * sd	R(ISO6974-3)	R(D1945)
Methane	%mol/mol	31	89.458	0.268	0.179	0.150
Ethane	%mol/mol	32	3.020	0.068	0.091	0.100
Propane	%mol/mol	32	2.504	0.101	0.075	0.100
n-Butane	%mol/mol	30	0.301	0.021	0.018	0.070
iso-Butane	%mol/mol	32	0.200	0.016	0.012	0.070
Carbon dioxide	%mol/mol	29	1.509	0.062	0.045	0.100
Nitrogen	%mol/mol	29	3.000	0.132	0.090	0.100

Table 2: Performance of the group in comparison with the target reproducibilities

Without further statistical calculations it can be concluded that for many components there is not a good compliance of the group of participating laboratories with the relevant standard. The problematic components have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF APRIL 2011 WITH PREVIOUS PTS

	2011	2010	2009
Number of reporting labs	33	29	39
Number of results reported	330	280	381
Statistical outliers	16	25	30
Percentage outliers	4.8%	8.9%	7.9%

table 3: Comparison with previous proficiency tests

In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

The performances of the determinations in the proficiency tests for NG were compared against the requirements of the two often used standard test methods. See the overview in the following table:

	2011 ISO6974-3	2011 D1945	2010 ISO6974-3	2010 D1945	2009 ISO6974-3	2009 D1945
Methane						
Ethane	++	++	++	++	-	+
Propane	-	+/-	-	+		-
n-Butane	- ++		+/-	++		++
iso-Butane - ++		+/-	++		++	
Carbon dioxide	-	++	-	-		-
Nitrogen		-		-		

table 4: comparison of observed precision with precision of ISO6974-3 / ASTM D1945

From the above table it is clear that the performance of the group of participating laboratories is (slowly) improving. The following performance categories were used:

- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard

4.4 DISCUSSION

Many of the observed reproducibilities are larger than the reproducibility requirements of ISO6974-3 and therefore it had to be concluded that, although a clear improvement was observed since the 2009 and 2010 PTs for Natural Gas, the determination of the composition of Natural Gas was still problematic for a significant number of participating laboratories. However, it is to be expected that the performance of many laboratories will further improve during the next PTs for Natural Gas.

The consensus values as determined in this PT are compared with the average values from the homogeneity testing by Scott Specialty Gases in the following table.

Parameter	Average values by Scott Specialty Gases in %mol/mol	Average values by ScottConsensus values fromSpecialty Gasesparticipants resultsin %mol/molin %mol/mol			
Methane	89.48	89.458	-0.022		
Ethane	3.002	3.020	+0.018		
Propane	2.498	2.504	+0.006		
n-Butane	0.297	0.301	-0.004		
iso-Butane	0.200	0.200	+0.000		
Carbon dioxide	1.512	1.509	-0.003		
Nitrogen	3.010	3.000	-0.010		

Table 5: comparison of consensus values with values determined by Scott Specialty Gases

From the comparison in table 5 it is clear that the consensus values as determined in this PT are all very well in line with the values as determined during the preparation of the gas cylinders.

It was the intention to request to report the ideal-gas superior caloric value on a volumetric basis in accordance with equation 8 of ISO 6976:1995 @25°C and 101.325 kPa (using table 4 of ISO6976:1995), and using the metering reference condition 0°C and 101.325 kPa (see table 5 of ISO6976:1995). From the reported results of the calculated parameters it is clear that not all results were calculated for the requested conditions, resulting in bimodal distributions of the reported results. Results calculated for different temperatures were reported. Five laboratories reported to have used 15°C, two 0°C and one 20°C for the calculation of the caloric value (see page 19).

Upon checking of all calculated parameters and comparison of the theoretical values with the reported test results, it became clear that also not all laboratories calculated the parameters for real gas.

Probably the following is the case:

2 labs may have reported the caloric value @15°C for ideal gas (& 10 labs for real gas);
3 labs may have reported the caloric value @25°C for ideal gas (& 5 labs for real gas);
3 labs may have reported the density @15°C for ideal gas (& 7 labs for real gas);
2 labs may have reported the density @25°C for ideal gas (but no labs for real gas);
6 labs may have reported the relative density for ideal gas (& 18 labs for real gas).

The instructions for the next PT obviously will have to be more clear and more detailed in order to improve the comparison of the calculated test results.

In order to get an impression of the spreads that can be reached when all laboratories will used the same combustion conditions and metering conditions, the theoretical values have been calculated from the reported compositions for a combustion temperature of 15°C and a metering temperature of 0°C for ideal gas. These theoretical values are given in appendix 1.

From the small spreads of the calculated theoretical values it can be concluded that the major part of the spreads in the reported results for the calculated parameters is not caused by the reported compositions, but rather by the use of different calculations! For example for the Caloric Value (sup) of 39.495 ± 1.023 MJ/m³ approx 95% of the spread is caused by calculation differences and only approx 5% by composition differences, as can be concluded from the small spread of the theoretical value of 38.686 ± 0.056 MJ/m³, using an identical calculation for each composition.

Determination of Methane on sample #11024; results in %mol/mol

lab	method	value	mark	z(targ)	remarks	
92	GPA2286	89,490		0.50		_
171	D1945	89.336		-1.91		
225						
316	ISO6974-3	89.500		0.66		
343	CEA1624	89.228		-3.60		
399						
442	D1945	89.4734		0.24		
444	D1945	89.453		-0.08		
496	DIN51666	89.568		1.72		
529	D1945	86.382	G(0.01)	-48.14		
602	GPA2261	89.4343		-0.37		
608	GPA2261	89.444		-0.22		
609	GPA2261	89.4912	0	0.52	first reported 80 720	
00Z	D1945	09.002	C	3.19	liist reported 89.729	
040 868	CPA2261	89.5052		0.88		
000 074	1906974	89.314		-1 92		
1011	LIOP539	89 268		-2.97		
1066	ISO6974	89 466		0.13		
1081	in house	89.45		-0.13		
1191	UOP539	89.351		-1.67		
1196	GPA2261	89.4858		0.44		
1197	D1945	89.341		-1.83		
1198	D1945	89.509		0.80		
1287	ISO6974-3	89.566		1.69		
1307	Fast RGA	89.535		1.21		
1369	in house	89.431		-0.42		
1377	D1945	89.465		0.11		
1380	0.0.000					
1388	GPA2261	89.469		0.17		
1390	In nouse	89.5101		0.82		
1419	D 1940 ISO6074 2	09.400 90.522		-0.05		
1654	D1945	90 345	C G(0.01)	13.88	first reported 91 585	
1737	in house	89.323	0,0(0.01)	-2.11		
1814	D1945	89.556		1.53		
	21010	001000				
	normality	not OK				
	n	31				
	outliers	2				
	mean (n)	89.458				
	st.dev. (n)	0.0956				
	R(calc.)	0.268				
	R(ISO6974-3)	0.179			Compare R(ASTM D1945) = 0.150	
^{90.4} T					5	
00.2					4.5 - Kernel Den:	sity
502					4 -	
90 -					3.5 -	
					3-	
89.8						
89.6					<u>-</u> ^{2.0}	
			_ <u>^ </u>	<u>م ۵ ۵</u>		
89.4 -		<u>_</u>				
802					1	
052 T					0.5	^
						Λ

86

87

88

89

90

91

Determination of Ethane on sample #11024; results in %mol/mol

lah method	value	mark	z(tara)	remarks	
	3 2 000	mark	_0.02	i vindi Ko	
171 D1045	2.990 3.040		0.92		
225	5.040		0.05		
316 1906974	3 3 002		-0.55		
343 CEA162	1 2 9 9 9		-0.64		
399 027102-					
442 D1945	3 0017		-0.56		
444 D1945	3 036		0.50		
496 DIN5166	6 2.990		-0.92		
529 D1945	2.860	G(0.01)	-4.94		
602 GPA226	3.0294	-()	0.30		
608 GPA226	3.055		1.09		
609 GPA226	3.0001		-0.61		
662 D1945	2.957	С	-1.94	first reported 2.938	
840 D1945	2.9983		-0.66		
868 GPA226	1 3.021		0.04		
974 ISO6974	3.057		1.15		
1011 UOP539	3.034		0.44		
1066 ISO6974	3.015		-0.15		
1081 in house	3.071		1.59		
1191 UOP539	3.038		0.57		
1196 GPA226	3.0048		-0.46		
1197 D1945	3.016		-0.11		
1198 D1945	3.038		0.57		
1287 ISO6974	-3 2.993		-0.83		
1307 Fast RG/	A 3.042		0.69		
1369 in house	3.048		0.87		
1377 D1945	3.032		0.38		
1380			0.00		
1388 GPA226	I 3.030		0.32		
1390 IN NOUSE	3.0001		-0.42		
1419 D1940	3.037		0.55		
1450 1500974 1654 D1045	-3 3.014	C	-0.10	first reported 2 065	
1737 in house	2 999	U	-0.64	liist reported 5.005	
1814 D1045	3 012		-0.24		
1014 01040	0.012		0.24		
normality	OK				
normality	32				
outliers	1				
mean (n)	3 0197				
st.dev. (r	0.02414				
R(calc.)	0.0676				
R(ISO69	74-3) 0.0906			Compare R(ASTM D1945) = 0.100	
,	,			,	
3.15 +					14 -
					Kernel Density
3.1 -					12 -
2 05					
5.00 T			۵ م ۵		
3			<u> </u>		8 -
2.95 +					6 -
2.9					4
2.85 ×					
					2 -

2.8

2.9

3

3.1

3.2

Determination of Propane on sample #11024; results in %mol/mol

lab	method	value	mark	z(targ)	remarks
92	GPA2286	2.490		-0.51	
171	D1945	2.571		2.51	
225					
316	ISO6974-3	2.490		-0.51	
343	CEA1624	2.477		-1.00	
399	D 40 45				
442	D1945	2.5315		1.03	
444	D1945	2.512		0.31	
496	DIN51666	2.433	C(0,01)	-2.64	
529	CDA2261	2.332	G(0.01)	-0.40	
608	GPA2201	2.5562		2.03	
609	GPA2261	2.510		1 07	
662	D1945	2.510	С	0.23	first reported 2.494
840	D1945	2.4435	-	-2.25	
868	GPA2261	2.455		-1.82	
974	ISO6974	2.548		1.65	
1011	UOP539	2.534		1.13	
1066	ISO6974	2.470		-1.26	
1081	in house	2.514		0.38	
1191	UOP539	2.514		0.38	
1196	GPA2261	2.4899		-0.52	
1197	D1945	2.526		0.83	
1190	D 1940 ISO6074 2	2.323		0.72	
1207	Fast RGA	2.479		-0.92	
1369	in house	2.524		0.75	
1377	D1945	2.480		-0.89	
1380					
1388	GPA2261	2.490		-0.51	
1390	in house	2.4945		-0.35	
1419	D1945	2.474		-1.11	
1436	ISO6974-3	2.483		-0.77	
1654	D1945	2.553	С	1.83	first reported 2.597
1011	D1045	2.403		-1.5Z	
1014	D1945	2.405		-1.45	
	normality	OK			
	n	32			
	outliers	1			
	mean (n)	2.5038			
	st.dev. (n)	0.03615			
	R(Calc.)	0.1012			Compare $P(ASTM D1945) = 0.100$
	r(13009/4-3)	0.0751			Cumpare R (ASTNI D 1943) = 0.100
^{2.6} T					10 т
					Kernel Density
2.55					
				۵ ۵	
2.5			۵ ۵ ۵ ۵		
2.45	<u>A</u> A				
A	Δ				
2.4 -					
2.35 -					
23					
529 73	840 868 868 1737 1814 1814 1814 1814 1814 1814	343 1287 1377 1377	316 328 390 390	662 444 081	

Determination of n-Butane on sample #11024; results in %mol/mol

lab	method	value	mark	z(targ)	remarks
92	GPA2286	0.300		-0.12	
171	D1945	0.309		1.28	
225					
316	ISO6974-3	0.297		-0.58	
343	CEA1624	0.295		-0.89	
399	_				
442	D1945	0.3029		0.33	
444	D1945	0.294		-1.05	
496	DIN51666	0.271	C,G(0.05)	-4.62	first reported 0.189, result mixed up with i-butane result
529	D1945	2.716	G(0.01)	374.75	
602	GPA2261	0.3005		-0.04	
608	GPA2261	0.300		-0.12	
609	GPA2261	0.3037	0.0/0.0/0	0.46	first see sets 1.0.000
662	D1945	0.341	C,G(0.01)	6.24	first reported 0.339
840	D1945	0.2868	C	-2.17	TIRST REPORTED 0.2681
808	GPA2261	0.301		0.04	
974	1506974	0.308		1.12	
1011	00P539	0.314		2.05	
1000	1506974	0.303	<u>^</u>	0.35	first reported 0.100, result mixed up with i butons result
1001		0.296	C	-0.74	nist reported 0.196, result mixed up with i-buildne result
1106	CDA2261	0.300		-0.12	
1190	D1045	0.3029		0.33	
1108	D1945	0.299		-0.27	
1287	1945	0.230		-0.74	
1307	Fast RGA	0.209		1 43	
1369	in house	0.313		1.40	
1377	D1945	0.298	С	-0.43	first reported 0.200, result mixed up with i-butane result
1380	21010		0		men opensou orzeo, room mixed up with routene room
1388	GPA2261	0.290		-1.67	
1390	in house	0.2982		-0.40	
1419	D1945	0.310		1.43	
1436	ISO6974-3	0.305		0.66	
1654	D1945	0.314		2.05	
1737	in house	0.289		-1.83	
1814	D1945	0.298		-0.43	
	normality	ОК			
	n	30			
	outliers	3			
	mean (n)	0.3008			
	st.dev. (n)	0.00739			
	R(calc.)	0.0207			
	R(ISO6974-3)	0.0180			Compare R(ASTM D1945) = 0.070

Kernel Density

0.35

0.4

Determination of iso-Butane on sample #11024; results in %mol/mol

lab	method	value	mark	z(targ)	remarks
92	GPA2286	0.200		-0.06	
171	D1945	0.206		1.34	
225					
316	ISO6974-3	0.201		0.17	
343	CEA1624	0.195		-1.23	
399					
442	D1945	0.2044		0.96	
444	D1945	0.197		-0.76	
496	DIN51666	0.189	С	-2.62	first reported 0.271, result mixed up with n-butane result
529	D1945	0.188	ex	-2.86	see §4.1
602	GPA2261	0.2045		0.99	
608	GPA2261	0.202		0.40	
609	GPA2261	0.2045	•	0.99	
662	D1945	0.216	C	3.67	first reported 0.214
840	D1945	0.1870		-3.09	
808	GPA2261	0.202		0.40	
974	1506974	0.211		2.50	
1011	000000	0.204		0.67	
1000	1300974 in house	0.200	C	-0.08	first reported 0.206, result mixed up with p-butape result
1101		0.190	C	-0.55	inst reported 0.230, result mixed up with n-butane result
1196	GPA2261	0.202		-0.08	
1197	D1945	0.199		-0.29	
1198	D1945	0.100		-0.06	
1287	ISO6974-3	0.193		-1.69	
1307	Fast RGA	0.202		0.40	
1369	in house	0.206		1.34	
1377	D1945	0.200	С	-0.06	first reported 0.298, result mixed up with n-butane result
1380					
1388	GPA2261	0.200		-0.06	
1390	in house	0.2001		-0.04	
1419	D1945	0.196		-0.99	
1436	ISO6974-3	0.197		-0.76	
1654	D1945	0.203		0.64	
1737	in house	0.198		-0.53	
1814	D1945	0.191		-2.16	
	normality	OK			
	n	32			
	outliers	0			
	mean (n)	0.2003			
	st.dev. (n)	0.00578			
	R(calc.)	0.0162			
	R(ISO6974-3)	0.0120			Compare R(ASTM D1945) = 0.070
0.22					
0.215					
0.21 -					Δ 70 -
					60
0.205					
0.2			<u></u>	<u>ه م م م</u>	

Determination of Carbon Dioxide on sample #11024; results in %mol/mol

lab	method	value	mark	z(targ)	remarks
92	GPA2286	1.530		1.27	
171	D1945	1.511		0.10	
225					
316	ISO6974-3	1.502		-0.46	
343	CEA1624	1.527		1.09	
399					
442	D1945	1.5008		-0.53	
444	D1945	1.519		0.59	
496	DIN51666	1.477		-2.00	
529	D1945	1.458	ex	-3.18	see §4.1
602	GPA2261	1.4591		-3.11	0
608	GPA2261	1.537		1.71	
609	GPA2261	1.4684		-2.53	
662	D1945	1.496	С	-0.83	first reported 1.486
840	D1945	1.5486		2.43	
868	GPA2261	1.517		0.47	
974	ISO6974	1.536		1.65	
1011	UOP539	1.604	G(0.05)	5.85	
1066	ISO6974	1.520		0.66	
1081	in house	1.527		1.09	
1191	UOP539	1.512		0.16	
1196	GPA2261	1.5296		1.25	
1197	D1945	1.495		-0.89	
1198	D1945	1.531		1.34	
1287	ISO6974-3	1.520		0.66	
1307	Fast RGA	1.426	G(0.05)	-5.16	
1369	in house	1.475		-2.13	
1377	D1945	1.522		0.78	
1380					
1388	GPA2261	1.510		0.04	
1390	in house	1.5076		-0.11	
1419	D1945	1.521		0.72	
1436	ISO6974-3	1.494		-0.95	
1654	D1945	0.500	C,G(0.01)	-62.42	first reported 0.735
1737	in house	1.488		-1.32	
1814	D1945	1.491		-1.14	
	normality	ОК			
	n	29			
	outliers	3			
	mean (n)	1.5094			
	st.dev. (n)	0.02204			
	R(calc.)	0.0617			
	R(ISO6974-3)	0.0453			Compare R(ASTM D1945) = 0.100
1.65 -					
1.00 T					16 Kernel Density
1.6 -					x 14 -

2.15

1.65

Determination of Nitrogen on sample #11024; results in %mol/mol

lab	method	value	mark	z(targ)	remarks	
92	GPA2286	3.000		-0.01		
171	D1945	3.027		0.83		
225	1000074.0					
316	1506974-3	3.009		0.27		
343	CEA1624	3.279	G(0.05)	8.67		
399	D1045	2.0952		0.46		
442	D1945	2.9000		-0.40		
496	DIN51666	2.909		2 23		
529	D1945	4 064	G(0.01)	33.09		
602	GPA2261	3.0140	0(0.01)	0.43		
608	GPA2261	2.943		-1.78		
609	GPA2261	2.9996		-0.02		
662	D1945	2.818	C,G(0.05)	-5.67	first reported 2.800	
840	D1945	2.9706		-0.92		
868	GPA2261	2.991		-0.29		
974	ISO6974	3.005	С	0.15	first reported 2.800	
1011	UOP539	3.041		1.27		
1066	ISO6974	3.026		0.80		
1081	In nouse	2.947		-1.66		
1191	00P339 GBA2261	3.070		2.42		
1190	D10/5	2.9071		3 73		
1198	D1945	2 900		-3.12		
1287	ISO6974-3	2.960		-1.25		
1307	Fast RGA	2.904		-2.99		
1369	in house	3.003		0.09		
1377	D1945	3.003		0.09		
1380						
1388	GPA2261	3.010		0.30		
1390	in house	2.9834		-0.52		
1419	D1945	3.007		0.21		
1436	ISO6974-3	2.983	0	-0.54	first see sets d.4.404	
1654	D1945	3.062		1.92	first reported 1.494	
1011	D1045	3.240	G(0.01)	7.40		
1014	D1945	2.907		-0.41		
	normality	OK				
	n	29				
	outliers	4				
	mean (n)	3.0002				
	st.dev. (n)	0.04710				
	R(calc.)	0.1319				
	R(ISO6974-3)	0.0900			Compare R(ASTM D1945) = 0.100	
^{4.3} T						12
4.1						Kernel Density
[[*] .']					x	10 -
3.9 -						
3.7 -						8 -
3.5 +						
3.3 -					×	

Natural Gas Analysis: iis11S01M

≛ =

▲ – **▲**

= =_4=

2.9

0 -

2.7

3.2

3.7

4.2

Determination of Caloric Value (sup) (@ 25°C and 101.325 kPa) on smpl #11024; results in MJ/m³

lab	method	value	mark	z(targ)	remarks
92	AGA#5	38.76			NB. Result was calculated @15° and 101.325 KPa
171					
225					
316	ISO6976	40.8730			
343	CEA1624	40.834			NB. Result was calculated @0° and 101.325 KPa
399					
442	ISO6976	38.81			
444	ISO6976	38.74			NB. Result was calculated @15° and 101.325 Kpa for real gas
496	DIN51857	40.786			04.4
529	ISO6976	37.03	ex		
602	1506976	38.833171			NB. Result was calculated @15° and 101.325 KPa
608	1506976	38.8133			NB. Result was calculated @15° and 101.325 KPa
609	1506976	38.8147			NB. Result was calculated @15° and 101.325 KPa
002	1000076	40 702			NP. Desult was calculated @0% and 101 225 Kes for ideal ass
040	1506976	40.703			NB. Result was calculated @0° and 101.325 Kpa for ideal gas
000	CDA2172	40.00			
974	GFAZITZ	30.01			
1066	1506076	40.9561			
1081	1300970	40.8501			
1101	1906976	40 762			
1196	1000010				
1197	ISO6976	38.74			
1198	ISO6976	38.82			
1287	ISO6976	38.756	С		first reported 3.756 (typing error)
1307			-		
1369	calc.	38.726			
1377	ISO6976	38.0786			NB. Result was calculated @20° and 101.325 KPa
1380					
1388	ISO6976	40.75484			
1390	ISO6976	40.879			
1419	ISO6976	38.68			
1436	ISO6976	38.74217			
1654	ISO6976	39.1813	С		first reported 39.7308
1737			-		
1814	D3588	38.75388	С		first reported 34.976
					Theor. results @15°C and 101.325 Kpa (ideal), see 4.1
	normality	not OK			not OK
	n	25			31
	outliers	0			2
	mean (n)	39.495			38.686
	st.dev. (n)	1.0227			0.0560
	R(calc.)	2.864			U.157
	rt(III.)	unknown			UNKNOWN

44

Determination of Density (@ 25°C and 101.325 kPa) on sample #11024; results in kg/m³

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	lab	method	value	mark	z(targ)	remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92	GPA2286	0.768			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	171					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	225					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	316	ISO6976	0.8122			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	343	CEA1624	0.8136			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	399					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	442	ISO6976	0.7701			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	444	ISO6976	0.7700			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	496	DIN51857	0.81069			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	529	1506976	0.7657	ex		see §4.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	602	1506976	0.770153			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600	1506976	0.770345			
	662	1300970	0.709704			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	840	1506976	0.81100			
	868	ISO6976	0.8120			
1011 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	974	GPA2172	0.7699			
1066 ISO6976 0.81242 1081 1191 ISO6976 0.7431 1193 ISO6976 0.7705 1193 ISO6976 0.7699 1287 ISO6976 0.756576 1369 1369 1377 ISO6976 0.756576 1380 ISO6976 0.72073 1380 ISO6976 0.8121 1419 ISO6976 0.76818 1419 ISO6976 0.76818 1814 ISO6976 0.745244 1814 ISO6976 0.745244 normality not OK OK OK n 23 31 outliers 0 2 meen (n) 0.77795 0.776810 st.dev. (n) 0.024678 0.000758 0.000758 R(caic.) 0.06910 0.00212 R(lit.) unknown unknown	1011	0.7.2.7.2				
$1081 \qquad \qquad \qquad \\ 1191 \qquad ISO6976 \qquad 0.7431 \qquad \\ 1197 \qquad ISO6976 \qquad 0.769 \qquad \\ 1197 \qquad ISO6976 \qquad 0.769 \qquad \\ 1307 \qquad \qquad \\ 1369 \qquad \qquad \\ 1377 \qquad ISO6976 \qquad 0.75676 \qquad \\ 1388 \qquad ISO6976 \qquad 0.7681 \qquad \\ 1419 \qquad ISO6976 \qquad 0.7681 \qquad \\ 1439 \qquad ISO6976 \qquad 0.7681 \qquad \\ 1436 \qquad ISO6976 \qquad 0.7681 \qquad \\ 1436 \qquad ISO6976 \qquad 0.7681 \qquad \\ 1437 \qquad ISO6976 \qquad 0.7681 \qquad \\ 1438 \qquad ISO6976 \qquad 0.745244 \qquad \\ 1814 \qquad ISO6976 \qquad 0.0745244 \qquad \\ 1814 \qquad ISO6976 \qquad 0.0745244 \qquad \\ 1814 \qquad ISO6976 \qquad 0.0745244 \qquad \\ 1814 \qquad ISO6976 \qquad 0.024678 \qquad 0.000758 \\ 0.000758 \qquad 0.000758 \\ 0.000758 \\ R(calc.) \qquad 0.006910 \qquad 0.000758 \\ R(tit.) \qquad unknown \qquad unknown \\ 100000000000000000000000000000000000$	1066	ISO6976	0.81242			
1191 ISO6976 0.7431	1081					
$1196 \qquad \qquad \qquad \\ 1197 \qquad ISO6976 \qquad 0.7705 \qquad \\ 1287 \qquad ISO6976 \qquad 0.7569 \qquad \\ 1307 \qquad \qquad \\ 1360 \qquad \qquad \\ 1377 \qquad ISO6976 \qquad 0.756176 \qquad \\ 1380 \qquad \qquad \\ 1380 \qquad \qquad \\ 1381 \qquad ISO6976 \qquad 0.742073 \qquad \\ 1390 \qquad ISO6976 \qquad 0.7612 \qquad \\ 1314 \qquad ISO6976 \qquad 0.745244 \qquad \\ 1814 \qquad ISO6976 \qquad 0.745244 \qquad \\ normality \qquad not OK \qquad OK \qquad OK \qquad \\ normality \qquad not OK \qquad OK \qquad \\ normality \qquad not OK \qquad OK \qquad \\ nean (n) \qquad 0.024578 \qquad 0.000758 \qquad \\ R(it.) \qquad unknown \qquad unknown \\ \\ 194 \qquad \\ 194 \qquad \\ 194 \qquad \\ 194 \qquad \\ 195 \qquad \\ 195 \qquad$	1191	ISO6976	0.7431			
$1197 ISO6976 0.7705 1198 ISO6976 0.7699 1307 1307 1307 1309 1309 1309 ISO6976 0.742073 1388 ISO6976 0.742073 1388 ISO6976 0.756126 1419 ISO6976 0.756126 1654 1737 1814 ISO6976 0.745244 1814 ISO6976 0.745244 normality not OK OK OK n 23 31 outliers 0 2 mean (n) 0.077795 0.76810 normality not OK OK R(calc.) 0.06910 0.00212 unknown unknown \frac{387}{24} - \frac{2}{4} + \frac{4}{4} + \frac{4}{4}$	1196					
$1198 ISC6976 0.7699 1287 ISC6976 0.7699 1369 1369 1377 ISC6976 0.742073 1388 ISC6976 0.742073 1388 ISC6976 0.742073 1419 ISC6976 0.7681 1419 ISC6976 0.7681 1654 1737 1814 ISC6976 0.745244 1814 ISC6976 0.745244 normality not OK OK OK n 23 31 outliers 0 2 mean (n) 0.77795 0.76810 st.dev. (n) 0.024678 0.000758 R(calc.) 0.06910 0.00212 R(iit.) unknown unknown \int_{10}^{10} \frac{1}{2} \int_{10}^{10} \frac$	1197	ISO6976	0.7705			
1287 ISO6976 0.769	1198	ISO6976	0.7699			
$1307 \qquad \dots \qquad $	1287	ISO6976	0.769			
$1369 \qquad \qquad$	1307					
	1369	1000070				
$1380 SO6976 0.742073 1380 SO6976 0.8121 1419 SO6976 0.756126 1654 1814 SO6976 0.745244 normality not OK OK n 23 31 outliers 0 2 mean (n) 0.77795 0.76810 st.dev. (n) 0.024678 0.000758 R(calc.) 0.06910 0.00212 R(lit.) unknown unknown \int_{0}^{27} \int_{0}^{4} \int_{0}$	1377	ISO6976	0.756576			
	1380	1000070				
$\begin{bmatrix} 1319 & 1506976 & 0.7681 & \dots \\ 1436 & 1506976 & 0.756126 & \dots \\ 1737 & \dots & \dots \\ 1737 & \dots & \dots \\ 1814 & 1S06976 & 0.745244 & \dots \\ normality & not OK & OK $	1300	1506976	0.742073			
136 SCO6976 0.756126 Image: 136 SCO6976 0.756126 Image: 136 SCO6976 0.756126 Image: 137 Image: 137 Image: 137 Image: 136 SCO6976 0.745244 Image: 137 Image: 136 SCO6976 0.745244 Image: 137 Image: 136 SCO6976 0.745244 Image: 136 SCO6976 0.76810 0.0002758 0.76810 0.0002758 0.0000758 0.0000758 0.0000758 0.0000758 0.0000758 0.0000758 0.00002712 Image: 136 SCO6976 0.00002712 Image: 136 SCO6976 0.0000758 0.00000000000000000000000000000000000	1/10	1300970	0.0121			
	1419	1506976	0.766126			
$\begin{bmatrix} 1337 & & & \\ 1814 & ISO6976 & 0.745244 & \\ normality & not OK & OK \\ n & 23 & 31 \\ outliers & 0 & 2 \\ mean (n) & 0.77795 & 0.76810 \\ st.dev. (n) & 0.024678 & 0.000758 \\ R(calc.) & 0.06910 & 0.00212 \\ R(lit.) & unknown & unknown \\ \end{bmatrix} \begin{bmatrix} 2^{2} &$	1654	1500370	0.750120			
$\begin{bmatrix} 1814 & ISO6976 & 0.745244 & & & \\ normality & not OK & & OK & \\ n & 23 & & 31 & \\ outliers & 0 & & 2 & \\ mean (n) & 0.77795 & 0.76810 & \\ st.dev. (n) & 0.024678 & 0.000758 & \\ R(calc.) & 0.06910 & & 0.00212 & \\ R(lit.) & unknown & unknown & \\ \end{bmatrix} \begin{bmatrix} 2^{2} & & & & & & & & & & & & & & & & & & &$	1737					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1814	ISO6976	0.745244			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.1.102.1.1			Theor, results @15°C and 101.325 Kpa (ideal), see 4.1
		normality	not OK			<u> </u>
		n	23			31
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		outliers	0			2
st.dev. (n) 0.024678 0.000758 0.00212 unknown $unknown$		mean (n)	0.77795			_ 0.76810
$R(calc.) \qquad 0.06910 \qquad unknown$ $R(calc.) \qquad 0.06910 unknown$ $R(calc.) \qquad 0.06910 unknown$		st.dev. (n)	0.024678			0.000758
R(lit.) unknown $x A A A A A A A A A$		R(calc.)	0.06910			0.00212
$ \begin{bmatrix} 0.82 \\ 0.8 \\ 0.7 \\ 0.8 \\ $		R(lit.)	unknown			unknown
0.82						
0.8	0.82 T					25
$\begin{bmatrix} 0.8 \\ 0.76 \\ & & & \\ & & & & \\ 0.76 \\ & & & & & \\ 0.74 \\ & & & & & \\ 0.72 \\ 0.7 \\ & & & & \\ 0.72 \\ 0.7 \\ & & & & \\ 0.7 \\ & & & \\ 0$						A A A A A A A Kernel Density
$\begin{array}{c} 0.78 \\ \hline \\ 0.76 \\ \hline \\ 0.74 \\ 0.74 \\ 0.72 \\ 0.7 \\ \hline \hline \hline \hline \\ 0.7 \\ \hline \hline \hline \hline \\ 0.7 \\ \hline \hline \hline \hline \hline \\ 0.7 \\ \hline $	0.8 -					
$\begin{array}{c} 0.78 \\ \hline & & \\ 0.76 \\ \hline & & \\ 0.74 \\ 0.74 \\ 0.72 \\ 0.7 \\ \hline & \\ 0.7 \\ \hline \hline & \\ 0.7 \\ \hline & \\ 0.7 \\ \hline & \\ 0.7 \\ \hline \\ 0.7 \\ \hline \hline & \\ 0.7 \\ \hline \\ 0.7 \\ \hline \hline & \\ 0.7 \\ \hline \hline & \\ 0.7 \\ \hline \hline & \\ 0.7 \\ \hline \hline \\ 0.$						
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ 0.76 \end{array} \\ \\ 0.74 \end{array} \\ 0.74 \end{array} \\ 0.74 \end{array} \\ 0.72 \\ 0.7 \\ \hline \\ 0.7 \end{array} \\ 0.7 \\ \hline \hline \\ 0.7 \\ \hline \hline \\ 0.7 \\ \hline \\ 0.7 \\ \hline \\ 0.7 \\ \hline \hline 0.7 \\ \hline 0.7 \\ \hline \hline 0.7 \\ \hline \hline 0.7 \\ \hline \hline 0.7 \\ \hline$	0.78 -					
			υ Δ Δ Δ	Δ Δ Δ	Δ Δ Δ	Δ Δ 15 -
	0.76 -	٨	*			
	0.74 - 🔺	Δ Δ				
	0.72 -					
	0.7 1	91 36 7	29 37 37	74	44 12 12	
	138	11 18 14; 137	1 128	9.6 115	4 4 6	φ τ σ φ φ ή η θ φ φ η θ φ φ η θ φ φ η θ η θ

Determination of Relative Density (@ 25°C and 101.325 kPa) on sample #11024; results

lab	method	value	mark	z(targ)	remarks
92	GPA2286	0.627			
171	0.7.2200				
225					
316	ISO6976	0.6282			
343	CEA1624	0.6292			
399					
442	ISO6976	0.6284			
444	ISO6976	0.6283			
496	DIN51857	0.62702			
529	ISO6976	0.6466	G(0.01)		
602	ISO6976	0.628486			
608	ISO6976	0.628643			
609	ISO6976	0.628169			
662	1000070				
840	1506976	0.62740			
868	1506976	0.6280			
974	GPAZITZ	0.0282			
1066	1906076	0.62836			
1081	1500370	0.02030			
1191	ISO6976	0 6277			
1196	1000010				
1197	ISO6976	0.6287			
1198	ISO6976	0.6283			
1287	ISO6976	0.628			
1307					
1369	calc.	0.62733			
1377	ISO6976	0.628152			
1380					
1388	ISO6976	0.62685			
1390	ISO6976	0.6281			
1419	1506976	0.6271			
1430	1506976	0.6277707	C(0,01)		
1004	1300970	0.019	G(0.01)		
1814	1506976	0 62624			
1014	1000070	0.02024			Theor, results @15°C and 101.325 Kpa (ideal), see 4.1
	normality	not OK			
	normality	24			31
	outliers	2			2
	mean (n)	0 62790			0 62707
	st.dev. (n)	0.000695			0.000619
	R(calc.)	0.00195			0.00173
	R(lit.)	unknown			unknown
0.65 -					600
3.00					
0.645 -					500 -
0.64 -					
					400 -
0.635 -					

Determination of Wobbe Index (@ 25°C and 101.325 kPa) on sample #11024; results in MJ/m³

lab	me	hod			va	lue			mai	rk	7	z(tar	a)	rer	narl	s						
92																-						
171																						
225	100						~-															
316	ISO	6976) 1		51	.570)7 2															
343	CE/	41624	4		51	.460	C															
442	ISC	6976			48	8.95																
444	ISC	6976	;		48	8.88																
496	DIN	5185	7		51	.508	3															
529	ISC	6976	i		46	6.05			ex					see	e §4	.1						
602	ISC	6976	į		48	3.984	4096	i														
600 600	150	6076			48	5.954 071	29															
662	150	0970)		40		525															
840	ISC	6976	;		51	.503	3															
868	ISC	6976	i		51	.56																
974	GP.	A217	2		48	8.88																
1011	100	0070					10															
1066	150	6976)		51	.54	10															
1191	ISC	6976	;		47	7.134	4															
1196							-															
1197																						
1198	100						~															
1287	150	6976)		48	3.92	3															
1369	cald				48		4															
1377	ISC	6976	;		48	3.04	51															
1380																						
1388	ISC	6976	j		51	.47	5146	6														
1390	150	6976) :		51	.581 2 85	J															
1436	ISC	6976	;		48	3.897 3.897	7135	;														
1654	ISC	6976	i		49	9.782	2							firs	t rep	oorte	ed 50	0.62	41			
1737																						
1814	ISC	6976			48	3.97 <i>°</i>	164		С					firs	t rep	Dorte	ed 44 ulte (i	4.15 @ 15	97 °C ≏	and 1	01 1	1 325 Kna (ideal) see 4 1
	nor	mality	,		nc	ot Ok	<							<u>- 0k</u>	<u></u>	1000		210	00		01.0	<u>1.020 Apu (lacul), 300 4.1</u>
	n				22	2	•							31	•							
	outl	iers			0									2								
	mea	an (n))		49	9.79								51.	.52							
	R/c	ev. (r alc.)	1)		1.4	422 98								0.0	175 91							
	R(li	t.)			ur	nkno	wn							unl	knov	vn						
⁵² T																						0.3
51 -														۵	۵	۵	۵	۵	Δ	Δ	4	Kernel Density
																						0.25 -
50 -													- 4									0.2
49 -								۵	۵	۵	۵	۵										
		•	-		-	-	-	-	-													0.15 -
48 -	۵																					
47 -	۵																					0.1 -
																						0.05
46 - *																						
45		6	4	4	0	9	4	2	80	4	<i>თ</i>	2	4	6	<i>8</i> 0	0	9	9	80	9	0	
52:	119	141:	97.	44.	136	1431	128	44:	90	181.	60:	90:	165.	34:	138	841	491	106	86	31-	139,	
																						8
																						7 - Kernel Density
																						6

55

. 50

45

4 -3 -2 -1 -0 -40

Details of the GC-configurations used

92	3 columns with switching/backflush (ISO 6974-5)
171	2 packed columns (ISO 6974-3 or ASTM D1945)
225	
316	2 packed columns (ISO 6974-3 or ASTM D1945)
343	3 columns with switching/backflush (ISO 6974-5)
399	
442	TCD channel (2 packed columns with switching) & FID channel (1 capillairy column)
444	TCD channel (2 packed columns with switching) & FID channel (1 capillairy column)
496	4 micropacked columns+2 capillary columns (1xFID & 2xTCD) with switching/backflush
529	3 columns with switching/backflush (Mol Sieve 13X + Hayesep + capillary CP-Sil 5CB)
602	3 columns with switching/backflush (ISO 6974-5)
608	2 packed columns with switching/backflush to TCD1 & 2 packed columns to TCD2
609	3 columns with switching/backflush (ISO 6974-5)
662	
840	3 columns (2 packed & 1 capillairy) with switching/backflush
868	4 packed columns with switching/backflush (3 valves)
974	3 columns (2 packed & 1 capillairy) with dual TCD & FID
1011	
1066	2 packed columns (ISO 6974-3 or ASTM D1945)
1081	
1191	6 columns with switching/backflush (2xTCD + 1xFID)
1196	4 packed columns with switching/backflush (3 valves)
1197	4 columns with switching/backflush (DC200, UCW 982, Hayesep Q, Mol Sieve)
1198	4 columns with switching/backflush (DC200, UCW 982, Hayesep Q, Mol Sieve)
1287	2 packed columns (ISO 6974-3 or ASTM D1945)
1307	Agilent fast RGA with 5 packed columns and 2 capillary colums
1369	3 packed columns (Molsieve 13X & 2x DC-200/500 Chrom PAW)
1377	2 packed columns (ISO 6974-3 or ASTM D1945)
1380	
1388	
1390	5 columns (1 capillairy to FID & 2 packed to TCD & 2 capillairy to TCD)
1419	HP6890 RGA 1058
1436	2 packed columns (ISO 6974-3 or ASTM D1945)
1654	3 capillairy columns with switching (ISO 6974-6)
1737	2 packed columns (Mol Sieve 13X & Charcoal) and one capillary column (Elite Alumina)
1814	2 columns (HP-Plot/Q & Molsieve X13)

Number of participants per country

1 lab in AUSTRALIA

- 2 labs in BELGIUM
- 1 lab in CANADA
- 1 lab in CÔTE D'IVOIRE
- 1 lab in FINLAND
- 1 lab in FRANCE
- 1 lab in GERMANY
- 1 lab in HUNGARY
- 1 lab in INDIA
- 2 labs in ITALY
- 6 labs in MALAYSIA
- 1 lab in MEXICO
- 3 labs in P.R. of CHINA
- 1 lab in PORTUGAL
- 1 lab in SLOVAK REPUBLIC
- 1 lab in SPAIN
- 1 lab in THAILAND
- 3 labs in THE NETHERLANDS
- 1 lab in TURKEY
- 1 lab in U.A.E.
- 1 lab in U.S.A.
- 3 labs in UNITED KINGDOM
- 1 lab in VIETNAM

Abbreviations:

- C = final result after checking of first reported suspect result
- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- ex = excluded from calculations
- n/a = not applicable
- W = withdrawn on request participant
- U = reported in wrong unit
- E = error in calculations
- SDS = Safety Data Sheet

Literature:

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics and Evaluation, January 2010
- 2 ISO 6974, Natural Gas Determination of composition with defined uncertainty by GC
- 3 ASTM E178-89
- 4 ASTM E1301-89
- 5 ISO 5725-86
- 6 ISO 5725, parts 1-6, 1994
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367/84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, First reported Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical Brief, No4 January 2001
- 14 The Royal Society of Chemistry 2002, Analyst 2002, 127 page1359-1364, P.J. Lowthian and M. Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)
- 15 ASTM D1945, Standard test method for Analysis of Natural Gas by GC