Results of Proficiency Test Vinyl Acetate Monomer April 2011

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Authors:dr. R.G. Visser & ing. L.DijkstraCorrectors:ing. R.J. Starink & ing. L.SweereReport:iis11C015

July 2011

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	EVALUATION OF THE PROFICIENCY TEST OF APRIL 2011 WITH PREVIOUS PTS	10

Appendices:

1.	Data and statistical results	11
2.	Number of participants per country	24
3.	Abbreviations and literature	25

1 INTRODUCTION

Since 2007, the Institute for Interlaboratory Studies organizes a proficiency test for the analysis of Vinyl Acetate Monomer (VAM). During the annual proficiency testing program 2010/2011, it was decided to continue the round robin for the analysis of Vinyl Acetate Monomer. In this interlaboratory study 28 laboratories in 21 different countries have participated. See appendix 2 for the number of participants per country. In this report, the results of the Vinyl Acetate Monomer proficiency test are presented and discussed. This report is also electronically available through the iis internet site www.iisnl.com.

2 SET UP

The Institute for Interlaboratory studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. It was decided to send one sample only. Analyses for fit-for-use and homogeneity were subcontracted to an accredited laboratory. Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluations.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO guide 43 and ILAC-G13:2007. This ensures 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (iis-protocol, version 3.2).

2.3 CONFIDENTIALITY STATEMENT

All data present in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary amount of bulk material of Vinyl Acetate Monomer Acid was obtained from a chemical producer. After homogenisation, 18 litre of the Vinyl Acetate Monomer was divided over 36 brown glass bottles of 500 mL and labelled #11115.

The homogeneity of the subsamples #11115 was checked by determination of Density in accordance with ASTM D4052:09 and water in accordance with ASTM D1364:07 on 4 stratified randomly selected samples.

	Density in kg/L	Water in mg/kg
sample #11115-1	0.93212	164
sample #11115-2	0.93218	182
sample #11115-3	0.93224	181
sample #11115-4	0.93218	193

table 1: homogeneity test results of subsamples #11115

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the target methods or with the reproducibility calculate using the Horwitz equation in agreement with the procedure of ISO 13528, Annex B2 in the next table

	Density in kg/L	Water in mg/kg
r (sample #11115)	0.00014	33.5
reference test	D4052:09	ASTM D1364:07
0.3*R (reference test)	0.00015	24.1

table 2: repeatabilities of subsamples #11115

The calculated repeatability for Density is in agreement with 0.3 times the corresponding reproducibility of the target method. The repeatability for Water is not in agreement with 0.3 times the corresponding reproducibility. However, the calculated repeatability for Water is in agreement with the repeatability limits of ASTM D1364:07 (r_{D1364} = 40.3). Therefore, homogeneity of the samples was assumed.

To each of the participating laboratories 1 bottle of 500 mL Vinyl Acetate Monomer (sample #11115) was sent on April 5, 2011.

2.5 STABILITY OF THE SAMPLES

The stability of Vinyl Acetate Monomer, packed in the brown glass bottles was checked. The material has been found stable for the period of the proficiency test

2.6 ANALYSES

The participants were asked to analyse according standard specification for VAM (ASTM D2190:07) plus additional tests: Acetaldehyde, Acetone, Acidity, Density @ 20 °C, Distillation, Ethyl Acetate, Inhibitor, Purity and Water. To get comparable results, a detailed report form on which the units and the standard methods were printed, was sent together with each set of samples. Also a letter of instructions and a SDS were added to the package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were received. The original reported results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after deadline, a reminder fax was sent to those laboratories that had not yet reported any results at that moment.

Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'iis. Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' January 2010 (iis -protocol, version 3.2)

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation. First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation should be used with due care.

In accordance with ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This method is for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 3; nr.13 and 14).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the spread of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8.

In case no literature reproducibility was available, other target values were used. In some cases literature repeatability is available; in other cases a reproducibility of a former is proficiency test could be used and also the Horwitz equation can be used to estimate target reproducibility.

The z-scores were calculated according to:

 $z_{(target)} = (result - average of PT) / target standard deviation$

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

z < 1	good
1 < z <2	satisfactory
2 < z < 3	questionable
3 < z	unsatisfactory

4 EVALUATION

In this proficiency test, no serious problems were encountered with despatch of the samples. Of the 28 participants, 4 participants reported results after the final reporting date. Not all participants were able to report results for all the requested tests. In total 264 numerical test results were reported. Observed were 16 outlying test results, which is 6.1% of the total of numerical test results. In proficiency studies, outlier percentages of 3% - 7.5% are quite normal.

4.1 EVALUATION PER TEST

In this section, the reported results are discussed per test.

Unfortunately, not for all determinations a suitable standard test method exists with precision data. For these determinations, the spreads were compared against the strict spreads estimated from the Horwitz equation.

A not-normal distribution was found for Density and Distillation (IBP, Mid Boiling Point, DP and Boiling Range). In these cases the statistical evaluation should be used with due care.

- Acetaldehyde: This determination may be problematic. No statistical outliers were observed and the reproducibility in agreement with ASTM D2191:06. However, the reproducibility is based upon an interlaboratory study on four samples of vinyl acetate containing 100, 200, 300, and 500 mg/kg acetaldehyde. This range is far above the measured concentration range and therefore the reproducibility according to ASTMD2191:06 may not be reliable. When Horwitz is used for evaluation than this method is problematic.
- <u>Acetone</u>: No numerical results were reported. Therefore no significant statistical conclusions were drawn. All reporting participants agreed on a result below 10.
- Acidity: This determination (with and without Nitrogen purging) was very problematic. It is remarkable to find that the acidity after purging is not significantly lower than the acidity without purging. In total three statistical outliers were observed. Both calculated reproducibilities, after rejection of the statistical outliers, are not at all in agreement with the requirements of ASTM D2086:08. One should keep in mind that the reproducibility of ASTM D2086 was determined with only two laboratories and therefore may not be very reliable (see note 5 in §13.2.2). ASTM D2086 leaves the solvent to be used optional, which may be a source of spread. Also the required pre-titration of the solvent may be a source of spread.

- <u>Appearance</u>: No analytical problems were observed. A new standardized method is available for Appearance since 2009, being ASTM E2680. According this method the appearance should be reported as 'pass' (or 'fail'). All the laboratories reported according this method, except three. Thirteen laboratories reported the appearance as pass. Five laboratories reported the appearance as Clear and Free from Suspended Matter (CFSM), four laboratories reported the appearance as Bright and Clear and one as Clear.
- <u>Density @ 20 °C:</u> This determination is not problematic. One statistical outlier was observed and the calculated reproducibility is in good agreement with the requirements of ASTM D4052:09. This method describes the density for a range from 0.80 g/ml to 0.88 g/ml. However, the density of VAM is outside this range. The range of previous method, the ASTM D4052:02e, was 0.68 g/ml to 0.97 g/ml. Both methods have the same reproducibility.
- <u>Distillation</u>: This determination is not problematic. In total five statistical outliers were observed. However, the calculated reproducibilities, after rejection of the statistical outliers, are all in good agreement with the requirements of ASTM D1078:05.
- <u>Ethyl Acetate:</u> This determination may be problematic. One statistical outlier was observed. However the calculated reproducibility, after rejection of the statistical outlier, is not in agreement with the requirements of the Horwitz equation.
- Inhibitor:This determination is problematic. One statistical outlier was observed(Hydroquinone)but the calculated reproducibility, after rejection of the statistical outlier,
is not in agreement with the requirements of ASTM D2193:06
- <u>Methyl Acetate</u>: This determination may be problematic. No statistical outliers were observed. But the calculated reproducibility is not in agreement with the requirements of the Horwitz equation.
- <u>Purity</u>: Regretfully, no suitable reference method with precision data exists for this determination. Two statistical outliers are observed and compared with the spread found in the previous PT (iis09C03), the calculated reproducibility, after rejection of the statistical outlier, is large. Perhaps not all participants reported the purity on dry basis.
- <u>Water</u>: This determination is not problematic. Three statistical outliers were observed. However, the calculated reproducibility, after rejection of the statistical outliers, is in full agreement with the calculated reproducibility with the requirements of ASTM D1364:07.
- 4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The assigned values, calculated reproducibilities and reproducibilities, derived from literature standards (in casu ASTM, ISO, EN standards) are compared in the next table.

Parameter	unit	n	mean	2.8 * sd	R (lit)
Acetaldehyde	mg/kg	16	25.73	18.78	80.00*
Acetone	mg/kg	17	< 10	n.a	n.a
Acidity (without N ₂ purging)	mg/kg	18	24.4	15.8	6.0
Acidity (with N ₂ purging)	mg/kg	12	24.9	10.8	6.0
Appearance		23			
Density @ 20°C	kg/L	25	0.9320	0.0002	0.0005
Ethylacetate	mg/kg	20	186.8	45.9	38.1
Initial Boiling Point	°C	19	72.41	0.24	1.13
50% recovery	٥C	17	72.70	0.00	0.50
Dry Point	٥C	19	72.83	0.20	0.78
Boiling Range	٥C	19	0.42	0.21	0.70
Inhibitor	mg/kg	19	4.24	1.26	1.00
Methyl Acetate	mg/kg	18	24.3	9.9	6.7
Purity	%M/M	23	99.97	0.03	unknown
Water	mg/kg	23	154.8	64.3	74.6

table 3: performance evaluation sample #11115

*see §4.1 (page 7)

4.3 EVALUTION OF THE PROFICIENCY TEST OF APRIL 2011 WITH PREVIOUS PTS

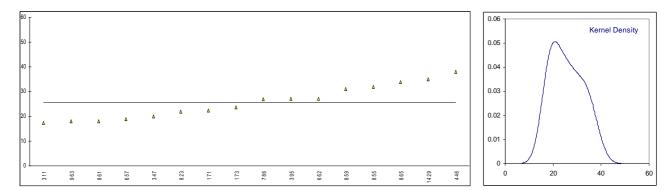
	April 2011	March 2010	March 2009
Number of rep. participants	28	21	26
Number of results reported	264	201	239
Statistical outliers	16	8	10
Percentage outliers	6.1%	4.0%	4.2%

table 4: evaluation with previous proficiency tests.

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency test was compared against the requirements of the respective standards. The conclusions are given the following table:

	April 2011	March 2010	March 2009
Acetaldehyde	++	++	++
Acetone	n.e	n.e	n.e
Acidity as Acetic Acid			
Density @ 20°C	++	++	++
Distillation	++	++	++
Ethyl Acetate		++	++
Inhibitor	-		
Methyl Acetate		n.e	++
Purity	n.e	n.e	n.e
Water	+		++


table 5: comparison determinations against the reference standards

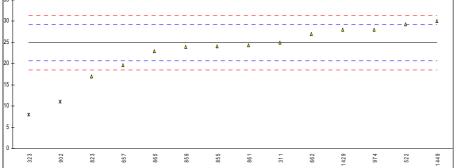
The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

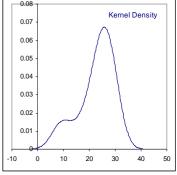
- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e.: not evaluated

APPENDIX 1

Determination of Acetaldehyde on sample #11115; results in mg/kg method value lab mark remarks z(targ) 171 INH-256 22.3 -0.12 INH-47 173 23.8 -0.07 174 -----0.29 311 D2191 17.35 323 D2191 <10 False negative result? ------0.20 347 INH-916 20 395 INH-47 27.110 0.05 446 INH-47 38 0.43 522 ----------551 --------------------562 613 ----------D2191 19 -0.24 657 662 INH-40 27.20 0.05 786 INH-004 27 0.04 823 D2191 22 -0.13 32 855 D2191 0.22 859 D2191 31 0.18 861 D2191 18 -0.27 865 D2191 34 0.29 887 --------------------902 913 ----------963 D2191 18 -0.27 974 -----1429 D2191 35 С 0.32 First reported 44 1449 ---------------1622 normality OK 16 n outliers 0 mean (n) 25.74 st.dev. (n) 6.708 18.78 R(calc.) R(D2191:06) Compare R(Horwitz) = 7.07 80.00

Determination of Acetone on sample #11115; results in mg/kg


lab	method	value	mark	z(targ)	remarks
171	INH-256	<1			
173	INH-47	<10			
174	D3545	<10			
311	INH-122	<10			
323	INH-067	<10			
347	INH-916	<10			
395	INH-47	<10			
446					
522					
551					
562	INH-001	<10	С		First reported < 0.001
613					
657		<10			
662	INH-40	n.d.			
786	INH-004	<10			
823	D3545	<1			
855	INH-065	<10			
859	INH-065	<10			
861					
865	INH-065	<10			
887					
902					
913					
963	INH-009	<5			
974	in haven				
1429	in house	<10			
1449					
1622					
	normality	no			
	normality n	n.e 17			
	outliers	0			
	mean (n)	-10			
	st.dev. (n)	n.e			
	R(calc.)	n.e			
	R(Horwitz)	n.e			
		11.0			


Determination of Acidity (without N_2 purging) on sample #11115; results in mg/kg

				_(1,)	
lab	method	value	mark	z(targ)	remarks
171	D2086	19.3		-2.38	
173	INH-44	10		-6.72	
174	D2086	19.0	0	-2.52	Einst assessed at 0,0007
311	D2086	27	С	1.22	First reported 0.0027
323	D2086	33		4.02	
347	D2086	25		0.28	
395	INH-44	24.93		0.25	
446	INH-44	18.7		-2.66	
522					
551					
562	D2086	30	С	2.62	First reported 0.0030
613					
657	D2086	24.0		-0.18	
662					
786	D2086	25.6		0.56	
823	D2086	28		1.68	
855	D2086	25.0		0.28	
859	D2086	26		0.75	
861	D2086	27.2		1.31	
865	D2086	24.8		0.19	
887					
902					
913	D2086	18.5		-2.75	
963					
974	D2086	51	C,G(0.01)	12.42	First reported 0.0051
1429	D2086	33	0,0(0.01)	4.02	· · · · · · · · · · · · · · · · · · ·
1449					
1622					
1022					
	normality	OK			
	n	18			
	outliers	10			
	mean (n)	24.39			
	st.dev. (n)	24.39 5.646			
	R(calc.)	15.81			
	R(D2086:08)	6.00			
	R(D2000.00)	0.00			
⁵⁸ T					0.08
53 -					x 0.07 - Kernel Density
48 -					
43 -					0.06 -
					0.05 -
38 -					
33 -					Δ Δ 0.04 -
28					
23		<u>م</u>	Δ Δ Δ	Δ Δ	
18					0.01
13 -					
8					
173	913 446 174 171	657 865	395 855 347	786 859	

Determination of Acidity (with N2 purging) on sample #11115; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171					
173					
174					
311	D2086	25	С	0.03	First reported 0.0025
323	D2086	8	DG(0.05)	-7.91	
347					
395					
446					
522	INH-40	29.3		2.03	
551					
562					
613					
657	D2086	19.7		-2.45	
662	INH-40	27		0.96	
786					
823	D2086	17		-3.71	
855	D2086	24.1		-0.39	
859	D2086	24		-0.44	
861	D2086	24.3		-0.30	
865	D2086	22.9		-0.95	
887	22000				
902	D2086	11	DG(0.05)	-6.51	
913	22000		20(0.00)		
963					
974	D2086	28	С	1.43	First reported 0.0028
1429	D2086	28	U	1.43	
1449	D2086	30	С	2.36	First reported 260
1622	22000		U		
TOLL					
	normality	OK			
	n	12			
	outliers	2			
	mean (n)	24.94			
	st.dev. (n)	3.864			
	R(calc.)	10.82			
	R(D2086:08)	6.00			
	N(D2000.00)	0.00			
³⁵ T					0.08
					Kernel Density
30 -					0.07

Determination of Appearance on sample #11115;

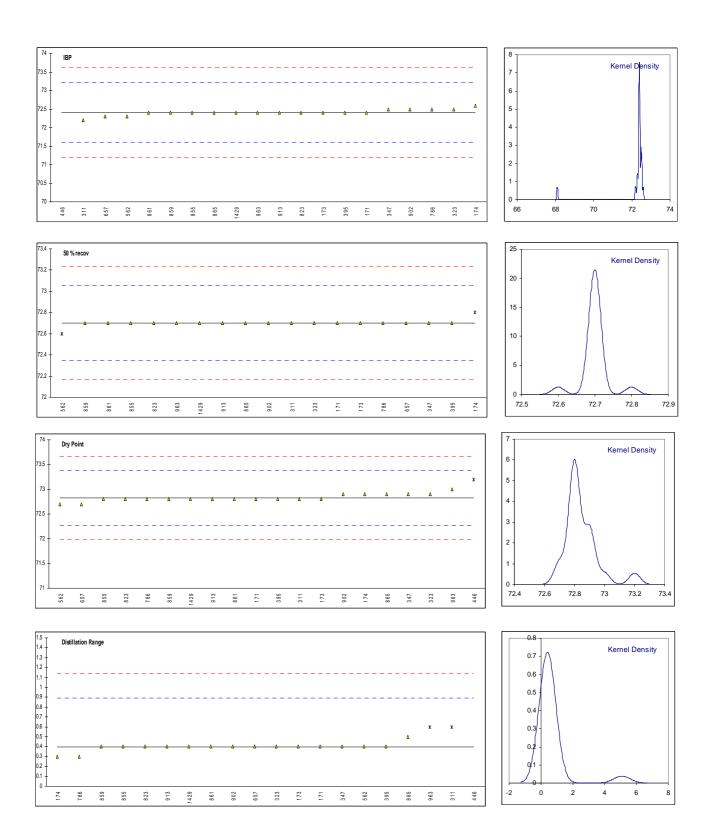
			-		
lab	method	value	mark	z(targ)	remarks
171	E2680	B&C			
173	E2680	CFSM			
174	E2680	PASS			
311	E2680	PASS			
323	E2680	CFFSM			
347	E2680	PASS			
395	E2680	PASS			
446	INH-500	PASS			
522	visual	CFSM			
551					
562	E2680	PASS			
613	INH-40	B&C			
657	E2680	PASS			
662	E2680	CLEAR			
786	E2680	PASS			
823	E2680	PASS			
855	E2680	PASS			
859	E2680	PASS			
861	E2680	B&C			
865	E2680	PASS			
887					
902	E2680	CFFSM			
913	E2680	CFFSM			
963	E2680	PASS			
974					
1429	E2680	B&C			
1449					
1622					
1022					

- C&F = Clear and free
- = Clear and free from suspended matter CFSM

- B&C = Bright and clear
- CCL = Clear colorless liquid

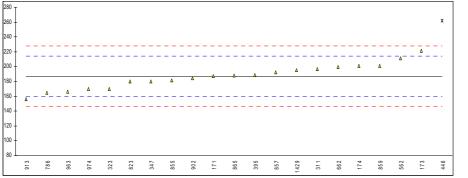
Determination of Density @ 20 °C on sample #11115; results in kg/L

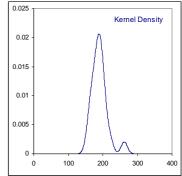
			-	4		
lab	method	value	mark	z(targ)	remarks	
171	D4052	0.9321		-0.51		
173	D4052	0.9322		0.05		
174	D4052	0.9322		0.05		
311	D4052	0.9322		0.05		
323	D4052	0.9323		0.61		
347	D4052	0.9322		0.05		
395	D4052	0.9321		-0.51		
446	INH-76	0.9322		0.05		
522 551						
562	D4052	0.9315	G(0.01)	-3.87		
613	D4052 D4052	0.9315	G(0.01)	-3.87		
657	D4052 D4052	0.93210		-0.51		
662	D4052 D4052	0.93210		0.05		
786	D4052	0.9321		-0.51		
823	D4052	0.9321		-0.51		
855	D4052	0.93220		0.05		
859	D4052	0.93219		0.00		
861	D4052	0.93215		-0.23		
865	D4052	0.93221		0.11		
887	D4052	0.93223		0.22		
902	D4052	0.93220		0.05		
913	D4052	0.93217		-0.11		
963	D4052	0.9322		0.05		
974	D4052	0.9323		0.61		
1429	D4052	0.9323		0.61		
1449	D4052	0.9321		-0.51		
1622	D4052	0.9323		0.61		
	normality	not OK				
	n	25				
	outliers	1				
	mean (n)	0.93219				
	st.dev. (n)	0.000065				
	R(calc.)	0.00018			Compare D(D4050:00-4) 0 0005	
	R(D4052:09)	0.00050			Compare R(D4052:02e1) = 0.0005	
^{0.9329} T					7000	
0.9327					Kernel Densi	ty
0.9325					5000 -	
0.9323 -		<u>A</u>	<u>AA</u> A	<u></u>		
0.9321 -		Δ -			3000 -	
0.9319						
0.9317 -					1000 -	
0.9315						
0.9315	► 40 00 00 40	0 0	3 3 4	2 6 2		0.9325



lab	method	IBP	mark	50% rec.	mark	DP	mark	range	mark
171	D1078	72.4		72.7		72.8		0.4	
173	D1078	72.4		72.7		72.8		0.4	
174	D1078	72.6		72.8	G(0.01)	72.9		0.3	
311	D1078	72.2		72.7		72.8		0.6	
323	D1078	72.5		72.7		72.9		0.4	
347	D1078	72.5		72.7		72.9		0.4	
395	D1078	72.4		72.7		72.8		0.4	
446	INH-45	68.1	G(0.01)			73.2	G(0.01)	5.1	G(0.01)
522									
551									
562	D1078	72.3		72.6	G(0.01)	72.7		0.4	
613					· · · ·				
657	D1078	72.3		72.7		72.7		0.4	
662									
786	D1078	72.50		72.70		72.80		0.30	
823	D1078	72.4		72.7		72.8		0.4	
855	D1078	72.4		72.7		72.8		0.4	
859	D1078	72.4		72.7		72.8		0.4	
861	D1078	72.4		72.7		72.8		0.4	
865	D1078	72.4		72.7		72.9		0.5	
887									
902	D1078	72.5		72.7		72.9		0.4	
913	D1078	72.4		72.7		72.8		0.4	
963	D1078	72.4		72.7		73.0		0.6	
974									
1429	D1078	72.4		72.7		72.8		0.4	
1449									
1622									
	normality	not OK		not OK		not OK		not OK	
	n	19		17		19		19	
	outliers	1		2		1		1	
	mean (n)	72.41		72.70		72.83		0.42	
	st.dev. (n)	0.088		0.000		0.073		0.076	
	R(calc.)	0.24		0.00		0.20		0.21	
	R(D1078:05)	1.13		0.50		0.78		0.70	

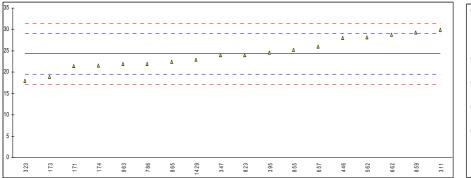
Determination of Distillation on sample #11115; results in °C

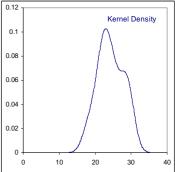

z-scores of distillation


lab	method	IBP	50% rec	DP	range
171	D1078	-0.03	0.00	-0.09	-0.06
173	D1078	-0.03	0.00	-0.09	-0.06
174	D1078	0.47	0.56	0.26	-0.46
311	D1078	-0.52	0.00	-0.09	0.74
323	D1078	0.22	0.00	0.26	-0.06
347	D1078	0.22	0.00	0.26	-0.06
395	D1078	-0.03	0.00	-0.09	-0.06
446	INH-45	-10.68		1.34	18.72
522					
551					
562	D1078	-0.27	-0.56	-0.45	-0.06
613					
657	D1078	-0.27	0.00	-0.45	-0.06
662					
786	D1078	0.22	0.00	-0.09	-0.46
823	D1078	-0.03	0.00	-0.09	-0.06
855	D1078	-0.03	0.00	-0.09	-0.06
859	D1078	-0.03	0.00	-0.09	-0.06
861	D1078	-0.03	0.00	-0.09	-0.06
865	D1078	-0.03	0.00	0.26	0.34
887					
902	D1078	0.22	0.00	0.26	-0.06
913	D1078	-0.03	0.00	-0.09	-0.06
963	D1078	-0.03	0.00	0.62	0.74
974					
1429	D1078	-0.03	0.00	-0.09	-0.06
1449					
1622					

Determination of Ethyl Acetate on sample #11115, results in mg/kg

		mark	z(targ)	remarks
INH-256	187.5		0.05	
INH-47	221.6		2.56	
D3545	201		1.05	
INH-122	196.4		0.71	
INH-067	170		-1.23	
INH-916	180		-0.50	
INH-47	188.843		0.15	
INH-47	262	G(0.01)	5.53	
INH-001	211	С	1.78	First reported 0.0211
	192		0.38	
INH-40	199.84		0.96	
INH-004	165		-1.60	
D3545	180		-0.50	
INH-065	181.8		-0.37	
INH-065	201.2		1.06	
INH-065	188		0.09	
INH-22	184.5	С	-0.17	First reported 240.7
	156		-2.26	
INH-009	166		-1.53	
	170		-1.23	
in house	195		0.60	
normality	ОК			
n				
outliers	1			
				Compare R(D3545:06) = 900 mg/kg at concentration 1000 mg/kg
	D3545 INH-122 INH-067 INH-916 INH-47 INH-47 INH-001 INH-001 INH-004 D3545 INH-065 INH-065 INH-065 INH-065 INH-022 INH-009 in house normality n	D3545 201 INH-122 196.4 INH-067 170 INH-916 180 INH-47 188.843 INH-47 262	D3545 201 INH-122 196.4 INH-067 170 INH-916 180 INH-47 188.843 INH-47 262 G(0.01) INH-001 211 C INH-001 211 C INH-001 199.84 INH-004 165 D3545 D3545 180 INH-065 INH-065 181.8 INH-065 INH-065 188 INH-065 184.5 C INH-065 186. INH-009 166 INH-009 166 Inhouse 195 Inhouse 195 INH-009 166. Inhouse 1 Inhouse 1 Inhouse 1	D3545 201 1.05 INH-122 196.4 0.71 INH-067 170 -1.23 INH-916 180 -0.50 INH-47 188.843 0.15 INH-47 262 G(0.01) 5.53 INH-01 211 C 1.78 INH-001 211 C 1.78 INH-001 192 0.38 INH-40 199.84 0.96 INH-04 165 -1.60 D3545 180 -0.50 INH-065 181.8 -0.37 INH-065 188 0.09 INH-22 184.5 C -0.17 INH-009 166 -1.53 In house 195 0.60 INH-009 166 -1.53 In house 195 0.60

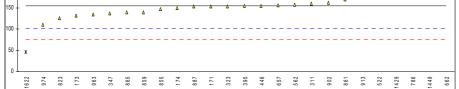



Determination of Inhibitor (Hydroquinone) on sample #11115; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D2193	4.1		-0.38	
173	INH-43	4.5		0.74	
174	D2193	5.0		2.14	
311	D2193	4.55		0.88	
323	D0400		0		Einsteine eite d.E.E.
347	D2193	4.5	С	0.74	First reported 5.5
395	INH-43	4.67		1.22	
446					
522	INH-40	4.12		-0.32	
551	D2193				
562 613	INH-40	3.95		-0.80	
657	D2193	3.6 3.47		-1.78 -2.14	
662	D2193	5.47		-2.14	
786	D2193	4.18		-0.16	
823	D2193 D2193	3.8		-0.18	
855	D2193 D2193	3.8 4.34		0.29	
859	D2193	4.49		0.23	
861	D2193	4.49		0.71	
865	D2193	4.02		-0.60	
887	52100				
902	D2193	4.2		-0.10	
913	D2193	3.5		-2.06	
963	22.00				
974	D2193	6.01	G(0.05)	4.97	
1429	D2193	5.0	C	2.14	First reported 7.59
1449					·
1622					
	normality	OK			
	n	19			
	outliers	1			
	mean (n)	4.236			
	st.dev. (n)	0.4485			
	R(calc.)	1.256			
	R(D2193:06)	1.000			
7 T					0.9
					0.8 Kernel Density
6 +					
5					0.7
Ĩ				۸ ۵	
4 -	۵ ۵	Δ Δ Δ	Δ Δ	4	0.5 -
4					0.4
3 -					
2					0.3 -
[]					0.2 -
1 -					
0 1	913 613 562 562	865 171 522	786 902	855 859	
657	91 82 56	86 17 52	78	85	

Determination of Methyl Acetate on sample #11115; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	INH-256	21.4		-1.20	
173	INH-47	18.9		-2.24	
174	D3545	21.5	С	-1.16	First reported 215
311	INH-122	29.9		2.33	
323	INH-067	18		-2.62	
347	INH-916	24		-0.12	
395	INH-47	24.613		0.13	
446	INH-47	28		1.54	
522					
551					
562	INH-001	28.2	С	1.63	First reported 0.00282
613					
657		26		0.71	
662	INH-40	28.78		1.87	
786	INH-004	22		-0.95	
823	D3545	24		-0.12	
855	INH-065	25.2		0.38	
859	INH-065	29.3		2.08	
861					
865	INH-065	22.4		-0.79	
887					
902					
913					
963	INH-009	22		-0.95	
974					
1429	in house	23		-0.54	
1449					
1622					
	normality	OK			
	n	18			
	outliers	0			
	mean (n)	24.29			
	st.dev. (n)	3.517			
	R(calc.)	9.85			
	R(Horwitz)	6.73			
		0.70			



Determination of Purity on sample #11115; results in % M/M

							_				_															_
lab	method		value		mark	1	z(ta		re	emar	ks															
171	INH-256		99.959	9			•																			
173	INH-47		99.60	_	G(0.0)1)																				
174	D3545		99.96																							
311	INH-122		99.974	1			•																			
323	INH-067		99.96	_																						
347	INH-916		99.977																							
395	INH-257		99.957				•																			
446	INH-257		99.948																							
522	INH-40		99.978	3																						
551							-																			
562	INH-001		99.98				-																			
613 657	INH-40		99.973																							
662	INH-40		99.965 99.94																							
786	INH-004		99.94 99.954	1																						
823	D3545		99.954																							
855	INH-065		99.975						0	n dry	/ has	eie														
859	INH-065		99.974						0	nuny	bas	515														
861	INH-065		99.96	T																						
865	INH-065		99.975	5																						
887	in house		99.96	-																						
902	INH-22		99.92		C,G(0.01)			Fi	irst re	eport	ted	99.9	935												
913	D3545		99.97		- / - (,																				
963	INH-009		99.97				-																			
974			99.98																							
1429	in house		99.973	38																						
1449																										
1622																										
	normality		OK																							
	n		23																							
	outliers		2																							
	mean (n)		99.966																							
	st.dev. (n)		0.0106																							
	R(calc.)		0.0298						_		_															
	R(Lit)		unkno	wn					С	ompa	are F	R(iis	09C	:03)) = (0.023	5									
^{99.99} T																		[35 1						_	
99.98 -														۵	۵	۵	۵						Ker	nel Densi	ty	
99.97 -							۵.	_ ▲	۵	۵	۵	۵	۵	4	-				30 -)		
				۵ ۵	4	Δ Δ											-		25 -					1		
99.96 -	۵	۵	۵ ۵	Δ Δ	•																					
99.95 -	Δ																		20 -							
99.94 -	۵																		15 -							
99.93 -																										
99.92 -	x																		10 -					11		
	•																		5 -							
99.91 -																			Ĭ	٨				\int		
99.9	° 8 7 7	5		~ ~				· ~		-	.	-9	5	-	5	4			0	Д			/	- \		
173	902 662 446 786	395	861	887 323	174	823 657	963	613 613	1429	311	859	865	855	347	522	974	562		99.5	99.6	5 99. [°]	7 99.8	99.9	9 100	100.1	

Determination of Water on sample #11115; results in mg/kg

lab	method	value	mark	z(targ)	remarks
171	D1364	154		-0.03	
173	E203	132.5		-0.84	
174	D1364	150		-0.18	
311	D1364	160	С	0.20	First reported 0.016
323	D1364	154		-0.03	
347	D1364	137		-0.67	
395	INH-63	154.62		-0.01	
446	INH-63	155		0.01	
522	INH-40	185.6		1.16	
551					
562	E203	157		0.08	
613					
657	D1364	156.6		0.07	
662	INH-40	310	G(0.05)	5.82	
786	D1364	220.8		2.48	
823	D1364	126		-1.08	
855	D1364	147		-0.29	
859	D1364	140		-0.55	
861	E1604	170		0.57	
865	D1364	139		-0.59	
887	D1364	153		-0.07	
902	D1364	162		0.27	
913	D1364	175		0.76	
963	D1364	134		-0.78	
974	D1364	110.5		-1.66	
1429	D1364	186		1.17	
1449	D1364	260	C, G(0.01)	3.95	First reported 30
1622	D1364	46	G(0.05)	-4.08	
	normality	ОК			
	n	23			
	outliers	3			
	mean (n)	154.77			
	st.dev. (n)	22.962			
	R(calc.)	64.29			
	R(D1364:07)	74.64			
³⁵⁰ T					0.018
300 -					x 0.016 - Kernel Density
					0.014 -
250 -					x
					0.012 -
200 +					٥.01
			·		
150 -		۵ ۵ ۵ ۵			
nn	Δ				0.006 -

0.004

0.002

0

0

100

200

300

400

APPENDIX 2

Number of participants per country

1 lab in AUSTRALIA

- 1 lab in BELGIUM
- 1 lab in BRAZIL
- 1 lab in CHILE
- 1 lab in INDIA
- 2 labs in INDONESIA
- 1 lab in ITALY
- 1 lab in KOREA
- 1 lab in MEXICO
- 4 labs in P.R. of CHINA
- 1 lab in RUSSIA
- 1 lab in SAUDI ARABIA
- 1 lab in SINGAPORE
- 1 lab in SPAIN
- 1 lab in TAIWAN R.O.C.
- 1 lab in THAILAND
- 1 lab in THE NETHERLANDS
- 1 lab in TURKEY
- 1 lab in U.A.E.
- 3 labs in U.S.A.
- 2 labs in UNITED KINGDOM

APPENDIX 3

Abbreviations:

С	= final result after checking of first reported suspect result
---	--

- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- E = error in calculations
- ex = excluded from calculations
- n.e. = not evaluated
- wd = withdrawn method

Literature:

- 1 i.i.s. Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 ASTM E178:89
- 3 ASTM E1301:89
- 4 ISO 5725:86
- 5 ISO 5725, parts 1-6, 1994
- 6 ISO13528-05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367:84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical brief, No4 January 2001
- 14 The Royal Society of Chemistry 2002, Analyst 2002, 127 page 1359-1364, P.J. Lowthian and M. Thompson (see http://www.rsc.org/suppdata/an/b2/b205600n/)