Results of Proficiency Test REN/Food Ethanol November 2010

Organised by: Institute for Interlaboratory Studies (iis) Spijkenisse, the Netherlands

Authors:ing. R.J. StarinkCorrectors:dr. R.G. Visser & ing. L. SweereReport:iis10C12b

January 2011

CONTENTS

1		3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDIENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	8
4.3	COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2010 WITH PREVIOUS PTS	9

Appendices:

1.	Data and statistical results	12
2.	Number of participants per country	19
3.	Abbreviations and literature	20

1. INTRODUCTION

Since 2007, a proficiency test for REN/Food Ethanol is organised every year by the Institute for Interlaboratory Studies. During the planning of the annual proficiency testing program 2010/2011, it was decided to continue the round robin for the analysis of REN/Food grade Ethanol.

In this interlaboratory study, 33 laboratories in 17 different countries have participated. See appendix 2 for a list of number of participants per country. In this report, the results of the proficiency test are presented and discussed.

2 SET-UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organiser of this proficiency test. Analysis for fit-for-use and homogeneity testing were subcontracted. It was decided to send one sample (1* 0.5 L of 95% REN/Food grade Ethanol, labelled #1091). Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, The Netherlands, is accredited in accordance with the ISO-guide G13:2007, (R007) since January 2000 by the Dutch Accreditation Council RvA (Raad voor Accreditatie). This ensures 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' (iis-protocol, version 3.2) of January 2010.

2.3 CONFIDENTIALITY STATEMENT

All data present in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary bulk material for sample #1091 was obtained from a local trader. The approximately 25 litre bulk sample was, after homogenisation in a precleaned can, divided over 47 amber glass bottles of 0.5 L and labelled #1091. The homogeneity of these subsamples was checked by determination of Density in accordance with ASTM D4052:02e1 and Water in accordance with ASTM D1364:07 on 8 stratified random selected samples.

Sample	Density @ 20ºC in kg/L	Water in %M/M
Sample #1091-1	0.80561	5.490
Sample #1091-2	0.80556	5.504
Sample #1091-3	0.80561	5.494
Sample #1091-4	0.80561	5.482
Sample #1091-5	0.80561	5.509
Sample #1091-6	0.80556	5.500
Sample #1091-7	0.80558	5.495
Sample #1091-8	0.80561	5.490

table 1: Homogeneity tests of subsamples #1091

From the test results of table 1, the repeatabilities were calculated and compared with 0.3 times the corresponding target reproducibility in agreement with the procedure of ISO 13528, Annex B2 in the next table:

	Density @ 20°C in kg/L	Water in %M/M
r (Observed)	0.00007	0.024
reference method	ASTM D4052:02e1	ASTM D1364:07
0.3 * R (ref. method)	0.00015	0.042

table 2: Repeatability of subsamples #1091

The repeatabilities of the results from the homogeneity test were in agreement with the requirements of the respective standards. Therefore, homogeneity of all the prepared subsamples was assumed.

To each of the participating laboratories 1*0.5 L bottle of sample #1091 was sent on October 27, 2010.

2.5 STABILITY OF THE SAMPLES

The stability of ethanol, packed in the amber glass bottles, was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were asked to determine on sample #1091: Density @ 20°C, Nonvolatile matter, Permanganate Time Test, Water (titrimetric), Purity on dry basis, Strength (in %V/V and %M/M) and UV transmittance at 300, 270, 240, 230 and 220nm. To get comparable results a detailed report form, on which the units were printed, was sent together with each sample. In addition, a letter of instructions and a SDS were added to the package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were received. The original reported results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after deadline, a reminder fax was sent to those laboratories that had not yet reported any results at that moment.

Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'i.i.s. Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' (i.i.s.-protocol, version 3.2) of January 2010.

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation. First the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation should be used with due care.

In accordance with ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 3, nr.13-14).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the spread of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8.

In case no literature reproducibility was available, other target values were used. In some cases, literature repeatability is available; in other cases, a reproducibility of a former is proficiency test could be used and the Horwitz equation can be used to estimate target reproducibility.

The z-scores were calculated according to:

 $z_{(target)} = (result - average of PT) / target standard deviation$

Absolute values for z < 2 are very common and absolute values for z > 3 are very rare. The usual interpretation of z-scores is as follows:

z < 1	good
1 < z < 2	satisfactory
2 < z < 3	questionable
3 < z	unsatisfactory

4. EVALUATION

In this proficiency test, some problems were encountered with despatch of the samples. Several laboratories in Brazil and Pakistan did receive the samples very late. Four participants reported results after the final reporting date. Five participants did not report any results at all. Not all laboratories were able to perform all analysis requested. Finally, the 28 reporting laboratories did send in 189 (numerical) results. Observed were 13 outlying results, which is 6.9%. In proficiency studies, outlier percentages of 3% - 7.5% are normal.

4.1 EVALUATION PER TEST

In this section, the results are discussed per test.

The methods, which are used by the various laboratories, are taken into account for explaining the observed differences when possible and applicable. These methods are also in the tables together with the original data. The abbreviations, used in these tables, are listed in appendix 3.

Not normal distribution was found for the following determination: Nonvolatile matter. In this case the statistical evaluation should be used with due care.

- <u>Density:</u> This determination was not problematic. No statistical outliers were observed and the calculated reproducibility is in good agreement with the requirements of ASTM D4052:02e1.
- <u>Nonvolatile matter:</u> This determination was not problematic. No statistical outliers were observed and the calculated reproducibility is in good agreement with the requirements of ASTM D1353:09.
- <u>Water:</u> This determination was problematic for two laboratories. Two statistical outliers were observed. However, the calculated reproducibility, after rejection of the statistical outliers, is in full agreement with the requirements of ASTM D1364:07.
- <u>Permanganate Time Test:</u> Regretfully, no precision data are given in ASTM D1363:06 for Ethanol. Therefore, no conclusions were drawn. All participants reported a time larger then 20 minutes.
- <u>Purity on dry basis</u>: Regretfully, no standard test method with precision data exists. Therefore no conclusions were drawn. One statistical outlier was observed. The calculated reproducibility is somewhat large in comparison with the calculated reproducibility in the previous proficiency test (iis09C13b) of December 2009 (0.0124 vs 0.0108).

- <u>Strength (%V/V):</u> This determination is not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in good agreement with the reproducibility derived from the OIML table and ASTM D4052:02e1.
- <u>Strength(%M/M)</u>: This determination may be not problematic. Regretfully, no standard test method with precision data exists. The calculated reproducibility is large in comparison with the calculated reproducibility in the previous proficiency test (iis09C13b) of December 2009 (0.095 vs 0.062).
- UV absorbance: Regretfully, no standard test method with precision data exists. Therefore no significant conclusions were drawn. In total 6 statistical outliers were observed. The calculated reproducibilities are all small in comparison with the calculated reproducibilities in a previous proficiency test (iis09C13b) of December 2009, except for UV 220nm.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The average results per sample, calculated reproducibilities and reproducibilities derived from literature standards (in casu ASTM, EN standards) or previous proficiency tests are compared in the next table.

Parameter	unit	n	average	2.8 *sd _R	R (lit)
Density @ 20°C	kg/L	28	0.80555	0.00024	0.00050
Nonvolatile matter	mg/100mL	5	0.18	0.13	2.40
Water	%M/M	14	5.465	0.124	0.148
Permanganate Time Test	min.	14	36.9	17.9	(9.3)
Purity on dry basis	%M/M	10	99.9955	0.0124	(0.0108)
Strength	%V/V	25	96.453	0.056	0.120
Strength	%M/M	14	94.507	0.095	(0.062)
UV-absorbance 300 nm		9	0.0005	0.0016	(0.0060)
UV-absorbance 270 nm		12	0.0031	0.0065	(0.0110)
UV-absorbance 240 nm		13	0.0441	0.0093	(0.0179)
UV-absorbance 230 nm		15	0.1036	0.0284	(0.0306)
UV-absorbance 220 nm		14	0.1982	0.0344	(0.0334)

Table 7: Reproducibilities of sample #1091

Results between brackets are compared with the spread of the previous proficiency test or estimated from target reproducibility

4.3 COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2010 WITH PREVIOUS PT'S

	November 2010	December 2009	December 2008	December 2007
Number of reporting labs	28	31	22	40
Number of results reported	189	299	153	595
Number of statistical outliers	13	34	8	30
Percentage outliers	6.9%	11.4%	5.2%	5.0%

table 10: comparison with previous proficiency tests.

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the respective standards. The conclusions are given the following table:

Parameter	November 2010	December 2009	December 2008	December 2007
Density @ 20°C	++	++	++	++
Nonvolatile matter	++	n.e.	n.e.	n.e.
Water	++			
Permanganate Time Test	()			
Purity on dry basis	()	(++)	(+/-)	()
Strength %V/V	++	-	(++)	(+)
Strength %M/M	()	(++)	()	()
UV-absorbance 300 nm	(++)	(++)	(++)	(+/-)
UV-absorbance 270 nm	(++)	(++)	(++)	()
UV-absorbance 240 nm	(++)	(++)	(++)	(-)
UV-absorbance 230 nm	(+)	(++)	(++)	(+)
UV-absorbance 220 nm	(-)	(++)	(++)	()

Table 11: comparison determinations of sample #1091 against the standard results between brackets are compared with the spread of the previous round robin

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:

- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e.: not evaluated

APPENDIX 1

Determination of Density @ 20°C on sample #1091; results in kg/L

lab	method	value	mark a	z(targ)	remarks			
273	D4052	0.8056		0.30				
311	D4052	0.8056		0.30				
323	D4052	0.8054		-0.82				
329	D4052	0 8054		-0.82				
333	D4052	0.8055		-0.26				
252	D4052	0.0055		-0.20				
357	D4052	0.8054		-0.62				
359	D4052	0.8055		-0.26				
446	D4052	0.8055		-0.26				
541	D4052	0.8054		-0.82				
551	D4052	0.8056		0.30				
556								
559								
657	D4052	0.8055		-0.26				
840	D4052	0.80552		-0.15				
862	D4052	0.80565		0.58				
867	D4052	0.80553		_0.00				
007	D4052	0.00555		-0.03				
922	D4052	0.80559		0.24				
1006								
1126								
1205	In house	0.805535		-0.06				
1241	In house	0.80555		0.02				
1242	D4052	0.805556		0.05				
1247	D4052	0.80579		1.36				
1253	D4052	0.80556		0.08				
1260	D4052	0.805607		0.34				
1270	D4052	0.805604		0.32				
1425	2.002							
1605	D4052	0 80558		0 10				
1726	D4052	0.80558		0.10				
1720	D4052	0.00530		0.13				
1121	D4032	0.00049		-0.32				
1817	In nouse	0.805660		0.64				
1835	D4052	0.80559		0.24				
2160	_							
9247	D4052	0.80551		-0.20				
	normality	OK						
	n	28						
	outliers	0						
	mean (n)	0.80555						
	st.dev. (n)	0.000087						
	R(calc.)	0.00024						
	R(D4052.02e1)	0.00050						
	IX(D+002.0201)	0.00000						
0.8063 T						6000 -	1	
0.8061								Kernel Density
0.9050						5000 -		
0.0003 +								
0.8057 -						4000 -	1 / \	
0.8055	Δ Δ .	۵ ۵ ۵ ۵	<u> </u>	_ <u>∧</u> ∧			/ /	
A 0.0052	Δ Δ Δ					3000 -	1	
0.8003 +								

0.805

0.8049

0.8047

0.80

329 357 541 323 727 446 657 333 359

9247

Determination of Nonvolatile matter on sample #1091; results in mg/100mL

lab	method	value	mark	z(targ)	remarks
273					
311	D1353	1.4	G(0.01)	1.42	
323	D1353	<1	0(0101)		
329	D1353	~1			
333	DI000				
357	D1353	-1			
250	D1353	<1			
309		<1		0.27	
440 544	IND-4024	0.5	G(0.05)	0.37	
541	D4050				
551	D1353	0.2		0.02	
556					
559	B				
657	D1353	0.1		-0.09	
840	D1353	<0.1			
862	D1353	<0.1			
867	D1353	<1			
922	D1353	0.2		0.02	
1006					
1126					
1205					
1241					
1242					
1247					
1253					
1260					
1270					
1425					
1605					
1726					
1727	EN15691	0.2		0.02	
1817					
1835	EN15691	0.2		0.02	
2160	ENTROOPT			0.02	
9247					
5247					
	normality	not OK			
	n	5			
	outliers	2			
	outilers	Z 0.19			
	niedn (n)	0.10			
	Stuev. (II)	0.045			
	R(Calc.)	0.13			
	R(D1353:09)	2.40			
³ T					
2.5 -					
2 -					
1.5 -					
					×

1835

561

0.5

0

Ā

667

823

1727

33

ж

446

Determination of Water on sample #1091; results in %M/M

lab	method	value	mark	z(targ)	remarks
273					
311	D1364	5.423		-0.80	
323	D1364	5 45		-0.29	
320	E203	5 41		-1.05	
222	D1264	5.5		0.66	
252	E202	5.5		0.00	
357	E203	5.429		-0.69	
359	E203	5.385		-1.52	
446	E203	5.6585	G(0.05)	3.67	
541	B 4004				
551	D1364	5.531		1.25	
556					
559					
657	D1364	5.481		0.30	
840	D1364	5.4997		0.66	
862	E203	5.518		1.00	
867	D1364	5.5033		0.72	
922	E203	5.45		-0.29	
1006					
1126					
1205					
1241					
1242					
1247					
1253					
1260					
1270					
1425	In house	5.44		-0.48	
1605					
1726	D1364	5.8028	G(0.01)	6.41	
1727	D1364	5.4923	(<i>'</i>	0.51	
1817					
1835					
2160					
9247					
	normality	OK			
	n	14			
	outliers	2			
	mean (n)	5.465			
	st.dev. (n)	0.0444			
	R(calc.)	0.124			
	R(D1364:07)	0.148			
5.9 _T					7
58					Kernel Density
0.0 -					
5.7 -					×
5.6					⁵
55					
- T		Δ Δ	Δ	Δ	· · · · · · · · · · · · · · · · · · ·
5.4 - 4	<u> </u>				
5.3					

5.1

5.6

5.4

5.8

Determination of Permanganate Time Test @ 15 °C on sample #1091; results in minutes

lab	method	value	mark	z(targ)	remarks		
273							
311	D1363	40					
323	D1363	>20					
329	D1363	>20					
333	D1363	45					
357	D1363	33					
359	D1363	32					
446	D1303	52					
541	D1363	27					
551	D1363	31					
556	DI000						
559							
657	D1363	42					
840	D1363	33					
862	D1363	38					
867	D1363	32					
007	D1363	34					
922 1006	D1303	34					
1126							
120							
1205							
1241							
1242							
1247							
1200							
1260							
1270							
1425							
1605	D 4000						
1720	D1363	47					
1/2/							
1817	INH-392	35					
1835	D1363	47					
2160							
9247							
	normality	OK					
	n	14					
	outliers	0					
	mean (n)	36.9					
	st.dev. (n)	6.38					
	R(calc.)	17.9					
	R(D1363:06)	(9.3)					
							1
⁵⁰ T						07	
45 -							Kernel Density
40 -						~ /	$\langle $
35				۵	<u>م</u> ــــــــــــــــــــــــــــــــــــ	05 -	
	۵ ۵	۵ ۵	Δ Δ	-			}

Determination of Purity on dry basis on sample #1091; results in %M/M

lab	method	value	mark	z(targ)	remarks	
273			in with	=(.u.g/		
311	INH-529	>99.99				
323	INH-001	99.99				
329	INH-001	99.99				
333		100.0				
357	INH-012	>99.99				
359						
446	INH-17	>99.99				
541						
551	INH-GLC	99.736	G(0.01)			
556						
559						
657	INH-001	99.99				
840	INH-001	99.998				
862	INH-001	99.999				
867	INH-001	99.992				
922	INH-001	99.997				
1000						
120						
1205						
1241						
1242						
1253						
1260						
1270						
1425						
1605						
1726	In house	100				
1727						
1817						
1835	In house	99.9988				
2160						
9247						
	normality/	OK				
	normality	10				
	outliers	10				
	mean (n)	99 9955				
	st.dev. (n)	0.00441				
	R(calc.)	0.0124				
	R(lit)	unknown			Compare R(iis09C13b) = 0.0108	
^{100.005} T						70
						Kernel Density
100 -					Δ Δ	60 -
				۵	Δ Δ	50 -
00.005				Δ		
35.330						40 -
			Δ			30-
99.99	۵	Δ Δ				
						20-

99.985

99.98

551

657

323

329

867

922

840

1835

862

1726

333

10 -0 -

99.7

99.8

99.9

100

Determination of Strength on sample #1091; results in %V/V

lab	method	value	mark	z(targ)	remarks
273		96.45			
311	OIML-73	96.44			
323	Osborn table	96.47			
329	Osborn table	96.48			
333	OIML-IT590	96.46			
357	OIML	96.50			
359	OIML	96.48			
446	OIML	96.45			
541					
551	D4052/OIML	96.46			
556					
559					
657	D4052/OIML	96.43			
840	D4052/OIML	96.462			
862	Alc table	96.44			
867	D4052/OIML	96.44			
922	OIML	96.44			
1006					
1126					
1205	OIML-IT590	96.460			
1241	Density det.	96.457			
1242		96.455			
1247		96.40			
1253	DE45 + Buchi	96.47			
1260	OIML	96.443			
1270		96.36	G(0.01)		
1425					
1605		96.45			
1726	OIML-11S90	96.45			
1727	OIML	96.47			
1817	AOAC 26.1.09	96.43			
1835	OIML	96.45			
2160					
9247		96.66	G(0.01)		
	normality	OK			
	normality	25			
	outliers	20			
	outilers	2			
	st dev (n)	0 0100			
	P(colc)	0.0199			
	R(calc.)	0.030			Compare $R(iis09C13b) = 0.103$
	1(300 34.1)	0.120			Sompare ((13030,130) = 0.103)
96.7 T					20
06.6					× 18 - ∬ Kernel Density
50.0					
96.5					
		Δ Δ Δ	<u> </u>	۵ ۵ ۵	
964 L A					

96.2

96.1

96

10 8 6

4

2 0

96.3

96.4

96.5

96.6

96.7

Determination of Strength on sample #1091; results in %M/M

lab	method	value	mark	z(targ)	remarks
273					
311	OIML-73	94.49			
323	Osborn table	94.53			
329	Osborn table	94.57			
333					
357	OIML	94.57			
359	OIML	94.53			
446					
541					
551	D4052/OIML	94.50			
556					
559					
657	D4052/OIML	94.47			
840	D4052/OIML	94.512			
862	Alc table	94.47			
867	D4052/OIML	94.47			
922	OIML	94.48			
1006					
1126					
1205					
1241					
1242					
1247					
1253					
1260					
1270					
1420					
1726	OIML ITSOO	04.40			
1720	OIML	94.49			
1817	OIVIL	34.32			
1835	OIMI	94 49			
2160	OIME				
9247					
0211					
	normality	OK			
	n	14			
	outliers	0			
	mean (n)	94.507			
	st.dev. (n)	0.0339			
	R(calc.)	0.095			
	R(lit)	unknown			Compare R(iis09C13b) = 0.062
^{94.8}					
94.7 -					Line Kernel Density
04.0					
94.0 +					۸ ۸ 10 -
94.5 -		Δ Δ	Δ Δ	Δ	
Q4.4	a a				
~'T					
94.3 -					

94.2

94.1

94

657

862

867

922

1726

311

1835

551

840

359

1727

323

357

329

4

2

0 -

94.4

94.45

94.5

94.55

94.6

Determination of UV absorbance on sample #1091;

lab	method	300nm	mark	270nm	mark	240nm	mark	230nm	mark	220nm	mark
273											
311	INH-094	<0.005		<0.005		0.048		0.112		0.213	
323	Customer meth.	< 0.001		< 0.001		0.043		0.104		0.206	
329	Customer meth.	<0.001		<0.001		0.041		0.109		0.204	
357											
359											
446	INH-13	<0.001		0.0034		0.0476		0.1150		0.2210	
541	-										
551	UV	0.0015		0.0063		0.0652	G(0.01)	0.0851		0.1753	
556											
559											
657	INH-060	0.001		0.006		0.039		0.108		0.208	
840		0.001		0.004		0.044		0.105		0.201	
002 867		-0.003	DG(0.05)	0.000		0.040		0.097		0.191	
922		0.000		0.001778		0.045		0.102		0.100	
1006											
1126											
1205											
1241											
1242		-0.002	DG(0.05)	-0.001	G(0.05)	0.038	ex	0.090	ex	0.174	ex,fr 0.151
1247											
1253				0.006				0.000		0 1 9 7	
1200				0.008		0.043		0.096		0.107	
1425											
1605		0.000		0.000		0.030	G(0.05)	0.085		0.184	
1726		-0.00032		0.001357		0.043803	- (/	0.10110		0.19085	
1727		0.000357		0.00361		0.0505		0.1234		0.2476	G(0.05)
1817											
1835		0.000330		0.00409		0.0436		0.1011		0.1930	
2160											
9247											
	normality	ОК		ОК		ОК		ОК		ОК	
	N	9		12		13		15		14	
	outliers	2		1		2		0		1	
	mean (n)	0.00048		0.00310		0.0441		0.1036		0.1982	
	st.dev. (n)	0.000583		0.002325		0.00330		0.01014		0.01230	
	R(calc.)	0.00163		0.00651		0.0093		0.0284		0.0344	
	K(lit)	unknown		unknown		unknown		unknown		unknown	
	R(IISU9U13D)	0.00604		0.01101		0.0179		0.0306		0.0334	

NB. All laboratories reported to have used a 10 mm cuvette and measured against water, except for laboratory 1242 that reported to have used a 5mm cuvette.

Determination of UV absorbance on sample #1091; (graphics)

APPENDIX 2

Number of participants per country

1 laboratory in ARGENTINA 4 laboratories in BELGIUM 3 laboratories in BRAZIL 2 laboratories in FINLAND 1 laboratory in FRANCE 1 laboratory in HONG KONG 2 laboratoriies in P.R. of CHINA 1 laboratory in PAKISTAN 1 laboratory in SINGAPORE 1 laboratory in SOUTH AFRICA 3 laboratories in SPAIN 1 laboratory in TAIWAN R.O.C. 1 laboratory in THAILAND 8 laboratories in THE NETHERLANDS 1 laboratory in TURKEY 1 laboratory in UNITED KINGDOM 1 laboratory in VIETNAM

APPENDIX 3

Abbreviations:

- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- E = error in calculations
- ex = excluded from calculations
- n.a. = not applicable
- U = unit error
- SDS = safety data sheet

Literature:

- 1 i.i.s. Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 W. Horwitz and R. Albert, J. AOAC Int., Vol. 79, 3, p. 589, (1996)
- 3 ASTM E178-02
- 4 ASTM E1301-03
- 5 ISO13528-05
- 5 ISO 5725-86
- 6 ISO 5725, parts 1-6, 1994
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367/84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical brief, No 4.January 2001
- 14 The Royal Society of Chemistry 2002, Analyst, 2002, 127, page 1359-1364, P.J. Lowthian and M. Thompson. (see http://www.rsc.org/suppdata/an/b2/b205600n/)