Results of Proficiency Test Acetic Acid March 2010

Organised by: Institute for Interlaboratory Studies Spijkenisse, the Netherlands

Authors:Ing. R.J. StarinkCorrectors:Dr. R.G. Visser & ing. M. AudierReport:iis10C01X

April 2010

CONTENTS

1		3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYSES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	COMPARISON OF THE PT OF MARCH 2010 WITH PREVIOUS PT'S	10

Appendices:

1.	Data and statistical results	11
2.	List of participants	24
3.	Abbreviations and literature	25

1 INTRODUCTION

Since 2003, the Institute for Interlaboratory Studies organizes a proficiency test for Acetic Acid. During the annual proficiency test program of 2009/2010, it was decided to continue the round robin for the analysis of Acetic Acid. In this international interlaboratory study 26 laboratories in 16 different countries have participated. See appendix 2 for a list of participants in alphabetical country order. In this report, the results of the proficiency test are presented and discussed. This report is also electronically available through the i.i.s. internet site www.iisnl.com.

2 SET UP

The Institute for Interlaboratory studies (i.i.s.) in Spijkenisse, The Netherlands, was the organiser of this proficiency test. It was decided to send one sample (500 mL) spiked with Iron (III) Chloride and Sodium Sulphate. Analyses for fit-four-use and homogeneity were subcontracted to an accredited laboratory.

Participants were requested to report rounded and unrounded results. The unrounded results were preferably used for statistical evaluations.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO guide 43 and ILAC-G13:2007, (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This ensures 100% confidentially of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organisation of this proficiency test was the one as described for proficiency testing in the report 'i.i.s. Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of January 2010 (i.i.s.-protocol, version 3.2).

2.3 CONFIDENTIALITY STATEMENT

All data present in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

The necessary amount of bulk material of Acetic Acid was obtained from a chemical producer. The approximately 25 litres of Acetic Acid was spiked with 281.1 mg Iron(III)Chloride.6H₂O and 195.7 mg Sodium Sulphate. After homogenisation, this material was divided over 50 brown glass bottles of 0.5 L and labelled #1015.

The homogeneity of the subsamples #1015 was checked by determination of Iron in accordance with ASTM E394:09 and by determination of Chloride as CI in accordance with an in-house test method on 8 stratified random selected samples.

	Iron in mg/kg	Chloride in mg/kg
sample #1015-1	2.76	4.2
sample #1015-2	3.06	4.2
sample #1015-3	2.92	4.2
sample #1015-4	2.89	4.2
sample #1015-5	2.71	4.2
sample #1015-6	2.73	4.3
sample #1015-7	2.68	4.2
sample #1015-8	2.68	4.2

table 1: homogeneity test results of subsamples #1015

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the target methods or with the reproducibility calculate using the Horwitz equation in agreement with the procedure of ISO 13528, Annex B2 in the next table;

	Iron in mg/kg	Chloride in mg/kg
r (sample #1015)	0.39	0.10
target	E394:04	Horwitz
0.3*R (target)	0.40	0.46

table 2: repeatabilities of subsamples #1015

The calculated repeatabilities were in agreement with 0.3 times the corresponding target reproducibility. Therefore, homogeneity of the samples was assumed.

To each of the participating laboratories 1* 0.5 litre (labelled #1015) was sent on February 24, 2010.

2.5 STABILITY OF THE SAMPLES

The stability of Acetic Acid, packed in an amber glass bottle, was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYSES

The participants were asked to determine Acetaldehyde, Chloride as Cl, Colour Pt/Co, Density @ 20 °C, Formic Acid, Freezing Point, Iron as Fe, Nonvolatile Matter, Purity (estimated from Freezing Point), Purity (titration) Sulphate as SO₄ and Water. To get comparable results, a detailed report form on which the units and the standard methods were printed, was sent together with each set of samples. Also, a letter of instructions and a SDS were added to the package.

3 RESULTS

During four weeks after sample despatch, the results of the individual laboratories were received. The original reported results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after deadline, a reminder fax was sent to those laboratories that had not yet reported any results at that moment.

Shortly after the deadline, the available results were screened for suspect data. A result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the results. Additional or corrected results are used for data analysis and original results are placed under 'Remarks' in the result tables in appendix 1.

3.1 STATISTICS

Statistical calculations were performed as described in the report 'i.i.s. Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' (i.i.s.-protocol, version 3.2) of January 2010.

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded results. Results reported as '<...' or '>...' were not used in the statistical evaluation. First the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test. After removal of outliers, this check was repeated. Not all data sets proved to have a normal distribution, in which cases the statistical evaluation should be used with due care.

In accordance with ISO 5725 (1986 and 1994) the original results per determination were submitted subsequently to Dixon and Grubbs outlier tests. Outliers are marked by D(0.01) for the Dixon test, by G(0.01) or DG(0.01) for the Grubbs test. Stragglers are marked by D(0.05) for the Dixon test, by G(0.05) or DG(0.05) for the Grubbs test. Both outliers and stragglers were not included in the calculations of averages and standard deviations. Finally, the reproducibilities were calculated from the standard deviations by multiplying these with a factor of 2.8.

3.2 GRAPHICS

In order to visualise the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported analysis results are plotted. The corresponding laboratory numbers are under the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected standard. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle. Furthermore, Kernel Density Graphs were made. This method is for producing a smooth density approximation to a set of data that avoids some problems associated with histograms (see appendix 3; nr.13 and 14).

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the spread of this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8.

In case no literature reproducibility was available, other target values were used. In some cases literature repeatability is available; in other cases a reproducibility of a former is proficiency test could be used and also the Horwitz equation can be used to estimate target reproducibility.

The z-scores were calculated according to:

 $z_{\text{(target)}} = (\text{result} - \text{average of PT}) / \text{target standard deviation}$

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

z < 1	good
1 < z <2	satisfactory
2 < z < 3	questionable
3 < z	unsatisfactory

4 EVALUATION

In this proficiency test, no serious problems were encountered with despatch of the samples. Four participants reported after the final reporting date, two of them received the samples near the reporting date. In total 193 numerical results were reported by 26 participants. Observed were 8 outlying results, which is 4.2% of the total of numerical results. In proficiency studies, outlier percentages of 3 % - 7.5 % are quite normal.

4.1 EVALUATION PER TEST

In this section, the results are discussed per test.

For comparison of the results of this interlaboratory study, the requirements from the specification ASTM D3620:09 "Standard Specification for Glacial Acetic Acid" were used. Unfortunately, for many determinations this specification is referring to ASTM E302 "Standard Test Methods for Monobasic Organic Acids", which was withdrawn in 2001 with no replacement.

For the determination of the Purity by Titration, the method used for comparison is ASTM E301:94, which was also withdrawn, with no replacement, in 2001. However, no other useful standardised method is published yet.

The target reproducibility used for the determination of the Purity by Freezing Point is calculated from the values in table 1 and the target reproducibility both from ASTM E302. For the other determinations without any stated reproducibilities the observed spreads were compared with the strict spreads estimated from the Horwitz equation.

A not-normal distribution was found for Acetaldehyde, Colour Pt/Co, Density @ 20°C, Freezing Point and Purity (estimated from Freezing Point). In these cases the statistical evaluations should be used with due care.

- <u>Acetaldehyde</u>: This determination was problematic for one laboratory. One statistical outlier was observed. The calculated reproducibility, after rejection of the statistical outlier, is in good agreement with the requirements of ASTM D2191:06.
- <u>Appearance</u>: No analytical problems were observed. All labs agreed about the appearance of sample #1015, which is bright, clear and free of suspended matter. The uniformity of reporting can be improved. A new standardized method is available for Appearance since 2009, being ASTM E2680. According this method the appearance should be reported as 'pass' (or 'fail').
- <u>Chloride</u>: This determination was problematic for two laboratories. Two false negative test results were observed. The calculated reproducibility is in good agreement with the estimated reproducibility limit, calculated using

the Horwitz equation. The Chloride content before spiking is not known. However, based on the assumption of zero content before spiking, the average recovery was estimated to be max 95%.

- <u>Colour</u>: This determination was problematic for one laboratory. No statistical outliers were observed, but only one false negative result was reported. The calculated reproducibility is in agreement with the requirements of ASTM D1209:05e1.
- <u>Density @ 20 °C:</u> This determination was problematic for one laboratory. Only one statistical outlier was observed. The calculated reproducibility, after rejection of the statistical outlier, is in good agreement with the requirements of ASTM D4052:02e1.
- <u>Formic Acid</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility, after rejection of the statistical outliers, is in good agreement with ASTM D3546:05.
- <u>Freezing Point</u>: This determination was not problematic. No statistical outliers were observed and the calculated reproducibility is in good agreement with the obsolete method ASTM E302:95.
- <u>Iron as Fe</u>: This determination was problematic. Two statistical outliers were observed and the calculated reproducibility, after rejection of the statistical outliers, is not in agreement with the requirements of ASTM E394:04. The Iron content before spiking is not known. However, based on the assumption of zero content before spiking, the average recovery was estimated to be max 111%.
- <u>Nonvolatile Matter:</u> This determination may be problematic for two laboratories. However, one statistical outlier was observed and one false negative result was reported. The calculated reproducibility, after rejection of the statistical outlier, is in agreement with the requirements of ASTM D1353:03.
- <u>Purity (from FP</u>): Regretfully, no suitable reference method with precision data exists for this determination. Therefore, a target reproducibility was calculated out of table 1 of the obsolete ASTM E302:95 and the reproducibility data of the obsolete ASTM E302:95.
 No analytical problems were observed. No statistical outliers were observed. The calculated reproducibility is in good agreement with the estimated reproducibility limits.

- <u>Purity (titration</u>): This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in good agreement with the requirements of the obsolete method ASTM E301:94.
- <u>Sulphate as SO4</u>: This determination may be problematic. No statistical outliers were observed. However, the calculated reproducibility is not in agreement with the requirements of the estimated reproducibility limits using the Horwitz equation. The Sulphate content before spiking is not known. However, based on the assumption of zero content before spiking, the average recovery was estimated to be max 114%..
- Water:This determination was not problematic. No statistical outliers were
observed and the calculated reproducibility is in good agreement with the
requirements of the obsolete method ASTM E302:95.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the relevant standard and the reproducibility as found for the group of participating laboratories. The average results per sample, calculated reproducibilities and reproducibilities derived from literature standards (in casu ASTM standards) are compared in the next tables.

Parameter	unit	n	average	2.8 * sd	R (lit)
Acetaldehyde	mg/kg	7	11.7	28.4	80.0
Chloride	mg/kg	8	4.00	0.50	1.40
Colour	Pt/Co	21	15.0	5.7	7.0
Density @ 20°C	kg/L	22	1.04934	0.00022	0.00050
Formic Acid	mg/kg	13	44.4	45.4	360.0
Freezing Point	°C	23	16.40	0.15	0.25
Iron as Fe	mg/kg	17	2.44	0.66	0.47
Nonvolatile Matter	mg/100 mL	15	2.06	1.43	2.40
Purity (Freezing Point)	%M/M	23	99.883	0.075	0.130
Purity (Titration)	%M/M	10	99.878	0.211	0.540
Sulphate as SO ₄	mg/kg	5	5.7	4.1	2.0
Water	%M/M	24	0.0789	0.0148	0.0500

table 3: Reproducibilities for sample #1015

Without further statistical calculations, it can be concluded that for almost all tests there is a good compliance of the group of participating laboratories with the relevant standards. The tests that are problematic have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF MARCH 2010 WITH PREVIOUS PTS

	March 2010	February 2008	March 2007	March 2006
Number of rep. participants	26	28	25	18
Number of results reported	193	197	181	146
Statistical outliers	8	7	17	4
Percentage outliers	4.2%	3.6%	9.4%	2.7%

table 4: comparison with previous proficiency tests.

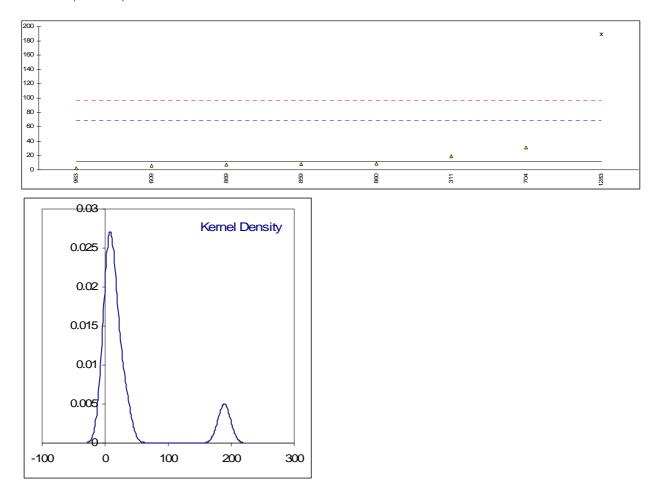
In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the respective standards. The conclusions are given the following table:

Determination	March 2010	February 2008	March 2007	March 2006
Aldehydes	++	++	++	++
Chloride	++	++	++	+
Colour	++	++	++	++
Density @ 20 °C	++	++	++	++
Formic Acid	++	++	++	++
Freezing Point	++	++	++	++
Iron as Fe		-	++	
Nonvolatile matter	++	+	++	++
Purity (Freezing point)	++	++	++	++
Purity (Titration)	++	++	++	++
Sulphate as SO ₄		n.e.	n.e.	n.e.
Water	++	++	++	++

table 5: comparison determinations against the standard

The performance of the determinations against the requirements of the respective standards is listed in the above table. The following performance categories were used:


- ++: group performed much better than the standard
- + : group performed better than the standard
- +/-: group performance equals the standard
- : group performed worse than the standard
- -- : group performed much worse than the standard
- n.e.: not evaluated

APPENDIX 1

Determination of Acetaldehyde on sample #1015; results in mg/kg

remarks

lab	method	value	mark	z(targ)
169				
171				
174				
311	D2191	19		0.26
315				
323	D2191	<10		<-0.06
342				
347				
357	Inh-052	<50		<1.34
359	Inh-052	<50		<1.34
395				
396	Datat			
609	D2191	5.53		-0.22
663	D0101			0.60
704	D2191	31.4		0.69
786 823	Inh-005	<10		<-0.06
859	D2191	8		-0.13
860	D2191 D2191	9		-0.13
869	D2191	7.0		-0.16
913	02101			
963	D2191	2		-0.34
1283	Inh-695	189	G(0.01)	6.21
1429	Client method	<100	-()	<3.09
1649				
	normality	not OK		
	n	7		
	outliers	1		
	mean (n)	11.7		
	st.dev. (n)	10.14		
	R(calc.)	28.4		
	R(D2191:06)	80.0		

Determination of Appearance on sample #1015;

lab	method	value	mark	z(targ)	remarks	
169	E2680	Pass				
171	E2680	C&F				
174	E2680	C&F				
311	E2680	Pass				
315	Inh-402	Pass				
323	E2680	Pass				
342						
347	E2680	Pass				
357	E2680	Pass				
359	E2680	Pass				
395	E2680	Pass				
396						
609	E2680	Pass				
663	E2680	Pass				
704	E2680	Pass				
786	E2680	Pass				
823	E2680	Pass				
859	E2680	Pass				
860	E2680	Pass				
869	E2680	Pass				
913	E2680	CFSM				
963	VISUAL	CFSM				
1283	Inh-001	Clear				
1429	D120	C&B				
1649						
1010						
	normality	n.a.				
	n	n.a.				
	outliers	n.a.				
	mean (n)	n.a.				
	st.dev. (n)	n.a.				
	R(calc.)	n.a.				
	R(lit)	unknown				
	ix(iii)	UIRIOWI				

Determination of Chloride as CI on sample #1015; results in mg/kg

160	method	value	mark	z(targ)	remarks	
169 171	E291	 3.94		-0.11		
174						
311 315	Inh-158	4.2		0.39		
323	Inh-008	4.0		0.00		
342 347						
357	VISUAL	<1		<-5.79	False negative?	
359 395	VISUAL	<1 		<-5.79	False negative?	
395						
609						
663 704	Inh-19814	 <4				
786	Inh-19814	<4				
823 859	Inh-279 Inh-001	3.6 4.1		-0.77 0.19		
860	IMPCA002	4.05		0.10		
869 913	Inh-001	4		0.00		
963						
1283 1429	Inh695 Client method	>1 4.1		0.19		
1429 1649	Client method	4.1 		0.19		
	n o rm - !!!.					
	normality n	OK 8				
	outliers	0	<u>Spike:</u>			
	mean (n) st.dev. (n)	4.00 0.180	4.21		<95% recovered	
	R(calc.)	0.50				
	R(Horwitz)	1.45				
5 - 4 - 3 -	Δ	Δ	<u>A</u>		<u> </u>	
2 -						
1 +						
0	ŝ	17	88		31 88 89 83 24 89 89 83	
	00	÷	60			
3.5						
			Kerfiel De	ensity		
3 -						
2.5 -						
2 -						
1.5 -						
1 -		\wedge				
0.5 -	/			$\langle $		
0		\bigcirc				
3	3.9	5	4	4.5	5	
L						

Determination of Colour Pt/Co on sample #1015

	method	value	mark	z(targ)	remarks										
lab 169	D5386	17.2	IIIdi K	2(tary) 0.89	Telliars										
171	E302	17.2		0.89											
174	E302	15.2		0.09											
311	E302 E302	15.2		0.09											
315	L302														
323	D1209	15		0.01											
342	D1209	16		0.41											
347	D1209	16		0.41											
357	D1209	15		0.01											
359	2.200														
395	D1209	15		0.01											
396	D1209	15		0.01											
609	D1209	18		1.21											
663	D1209	15		0.01											
704	D1209	12		-1.19											
786	D1209	15		0.01											
823	E302	14		-0.39											
859	D1209	15		0.01											
860 869	D1209	15		0.01											
	E302	14		-0.39											
913 963	E302 D1209	11.0 11		-1.59 -1.59											
1283	Inh-8768	20		2.01											
1429	D1209	<5		<-4.00	False neg	ative									
1649															
	normality	not OK													
	n	21													
	outliers	0													
	mean (n)	15.0													
	st.dev. (n)	2.05													
	R(calc.)	5.7													
	R(D1209:05e1	1) 7.0													
15 10 5 -	A	Δ Δ	<u> </u>		<u>A</u>	_	<u>A</u>	&	_		<u> </u>	<u> </u>	A	▲ 	
0 8	913 704	88 88 8	88	883	33 38	311	171	357	38	174	342	347	8	899	1283
88	913 704	88 83	26 88 88	988 4 4	33 38	311	171	357	386	174	342	347	18	89	1283
0.25	208 213		§ § Kernel D		88 8	311	121	357	38	174	342	347	8	89	1283
0.25	-				8 8	311	171	357	ଞ୍ଚ	174	342	246	8	89	1283
0.25 0.2 0.15	-				88 83	311	121	357	88	174	345	347	8	83	1283
0.25 0.2 0.15 0.1	-				<u>88</u>	311	171	357	8	174	28	347	<u>8</u>	89	1288
0.25 0.2 0.15	-				88 88	311	171	357	366	174	27	347	18	89	1288

Determination of Density @ 20 °C on sample #1015; results in kg/L

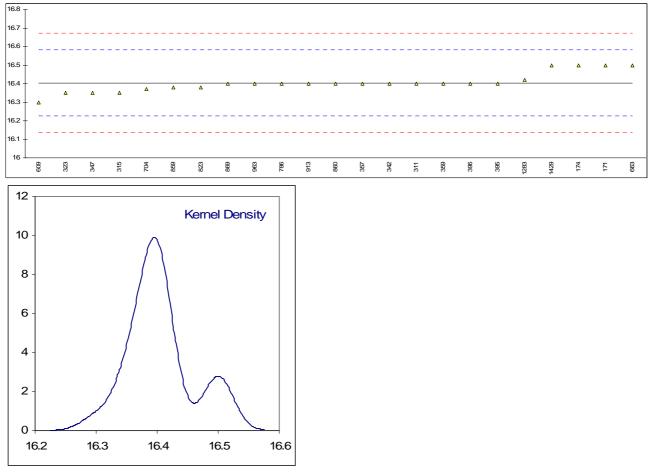
		•		·			Ũ								
lab	method	value	mark	z(targ)	remarks										
169	D4052	1.04941		0.38											
171	D4052	1.0494		0.33											
174	D4052	1.0493		-0.23											
311	D4052	1.04937		0.16											
315 323	D4052 D4052	1.0494 1.0491		0.33 -1.35											
342	D4052	1.0493		-0.23											
347	D4052	1.04934		-0.01											
357	D4052	1.0493		-0.23											
359	D4052	1.0493		-0.23											
395	D4052	1.0493		-0.23											
396	D4052	1.0494		0.33											
609 663	D4052 D4052	1.04952 1.0493		1.00 -0.23											
704	D4052	1.0494		0.33											
786	D4052	1.0493		-0.23											
823	D4052	1.0494		0.33											
859	D4052	1.04934		-0.01											
860	D4052	1.04935		0.05											
869 913	D4052 D4052	1.04928 1.0493		-0.34 -0.23											
913 963	D4052 D4052	1.0493		-0.23 0.33											
1283	2.002														
1429	D4052	1.0513	G(0.01)	10.97	Measured a	at a differe	nt temp	eratur	re?						
1649															
	normality	not OK													
	normality n	101 OK 22													
	outliers	1													
	mean (n)	1.04934													
	st.dev. (n)	0.000080													
	R(calc.)	0.00022													
	R(D4052:02e1) 0.00050													
1.0515															*
1.051 -															
1.0505 -															
1.05 -															
1.0495 -															
1.0400 -	Δ Δ	Δ Δ Δ	Δ Δ	Δ Δ	<u> </u>	A	Δ	Δ	Δ	Δ	Δ	Δ	۵	_	
1.049 -	^														
1.0485	88 33 75 88 23	38 36 31	174 913	683	347	311 880	88	823	315	171	38	704	8	89	1429
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n n ñ	- ò	9 Ř	. a r	a n	o	Ø	ю	-	ы	Ň	÷	ø	4
3500	1														
			Kernel De	ansity											
3000		٨		sisity											
500	]	Λ													
		11													
2500	-	()													
		11													
2000	-	1 \													
4500															
1500	1														
1000	-														
500	/	1													
	}	1													
		1		<b>、</b>											

1.049

1.05

1.051

1.052


0 ↓___ 1.048

# Determination of Formic Acid on sample #1015; results in mg/kg

lab	method	value	mark	z(targ)	remarks							
169												
171												
174	D2546											
311 315	D3546	21 		-0.18								
323	D3546	42		-0.02								
342												
347												
357	D3546	57		0.10								
359	D3546	44 		0.00								
395 396	Inh-81	48		0.03								
609	D3546	74.85		0.24								
663												
704	Inh-19814	130	DG(0.01)	0.67								
786	Inh-19814	68.7		0.19								
823 859	D3546	 39		-0.04								
860	D3546	36		-0.07								
869	D3546	34		-0.08								
913												
963	D3546	19		-0.20								
1283 1429	Inh-695 Client method	111 42	DG(0.01)	0.52 -0.02								
1649	GC	42 52		0.02								
				0.00								
	normality	OK										
	n	13										
	outliers	2 44.4										
	mean (n) st.dev. (n)	44.4 16.23										
	R(calc.)	45.4										
	R(D3546:05)	360.0										
150 - 100 - 150 -												
100 -											*	 *
00 - 50 - 00 - 50 - 00 - 50 - 00 -		Δ Δ	Δ		ΔΔ				Δ	Δ	×	×
00 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	<u>Δ</u> <u>Δ</u>		Δ 	<u> </u>	A A A							
00 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	9 <del>0</del> 8 31	▲ ▲ 88 88	▲ 	<u>۸</u>	<u>م</u> م			<u>م</u> الم	▲ 	<u>ک</u>	*	×
00 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -					<u>▲</u>							
	⁸⁸ ⁵ / ₅		A ® Kernel Den		<u>▲</u> ▲		<u>م</u>					
	8 5 0.02 0.018 -				<u>∧</u>		A Gy					
	⁸⁸ ⁵ / ₅				<u>∧</u>		<u>م</u>					
	8 5 0.02 0.018 - 0.016 -				<u>∧</u>	  ₩						
	8 5 0.02 0.018 -				<u>∧</u>	 ₩						
	8      5        0.02      0.018        0.016      0.016				▲ 3 88 		<u><u></u></u>					
	8      5        0.02      0.018        0.016      -        0.014      -        0.012      -				3 8		67 67 20 20					
	8      5        0.02      0.018        0.016      0.016				<u>۸</u>		4 (1) (2) (2)					
	8      5        0.02      0.018        0.016      -        0.014      -        0.012      -        0.01      -				<u>م</u>	      						
	8  5    0.02  0.018    0.016  -    0.014  -    0.012  -    0.01  -    0.008  -				<u>م</u>							
	8      5        0.02      0.018        0.016      -        0.014      -        0.012      -        0.01      -				<u>م</u>							
	8      5        0.02      0.018        0.016      -        0.014      -        0.012      -        0.0018      -        0.016      -        0.016      -        0.016      -        0.017      -        0.008      -        0.006      -				<u>▲</u>							
	8    5      0.02    0.018      0.016    -      0.014    -      0.012    -      0.001    -      0.008    -      0.006    -      0.004    -				<u>▲</u>		<u>م</u>					
	8    5      0.02    0.018      0.016    -      0.014    -      0.012    -      0.001    -      0.008    -      0.006    -				<u>▲</u>	<u>.</u>	<u>م</u>					
	8    5      0.02    0.018      0.016    -      0.014    -      0.012    -      0.001    -      0.008    -      0.006    -      0.004    -				<u>▲</u>		gy gy					
	8    5      0.02    0.018      0.016    -      0.014    -      0.012    -      0.001    -      0.008    -      0.006    -      0.002    -		Kernel Den	sity	<u>▲</u>		<u>م</u>					
	8    5      0.02    0.018      0.016    -      0.014    -      0.012    -      0.001    -      0.008    -      0.006    -      0.002    -				<u>∧</u>							

# Determination of Freezing Point on sample #1015; results in °C

lab	method	value	mark	z(targ)	remarks	
169	motion		mark	2(targ)	- Cillarito	
171	E302	16.50		1.07		
174	E302	16.5		1.07		
311	E302	16.40		-0.05		
315	D1493	16.35		-0.61		
323	D1493	16.35		-0.61		
342	D1493	16.40		-0.05		
347	E302	16.35		-0.61		
357	E302	16.40		-0.05		
359	E302	16.4		-0.05		
395	Inh-124	16.4		-0.05		
396	D1493	16.4		-0.05		
609	Inh-70013	16.30		-1.17		
663	D6875	16.50		1.07		
704	Inh-61	16.37		-0.38		
786	E302	16.40		-0.05		
823	E302	16.38		-0.27		
859	E302	16.38		-0.27		
860	E302	16.40		-0.05		
869	E302	16.40		-0.05		
913	E302	16.4		-0.05		
963	E302	16.40		-0.05		
1283	Inh-695	16.42		0.18		
1429	Client method	16.50		1.07		
1649						
	normality	not OK				
	n	23				
	outliers	0				
	mean (n)	16.404				
	st.dev. (n)	0.0519				
	R(calc.)	0.145				
	R(E302:95)	0.250				
	· · · ·					



# Determination of Iron as Fe on sample #1015; results in mg/kg

lab	method	value	mark	z(targ)	remarks
169 171	E204				
171 174	E394	2.69		1.47	
311 315	E394	2.53		0.52	
323	E394	2.63		1.11	
342 347	E394	 2.87		2.53	
347 357	D3620	2.87		-0.54	
359	E394	2.22		-1.31	
395	E394	2.289		-0.90	
396 609	E394	 1.22	DG(0.01)	-7.22	
663	E394	2.53	DO(0.01)	0.52	
704	E394	2.565		0.73	
786	E394	2.223		-1.29	
823	E394	1.3	CDG(0.01)	-6.74	First reported 3.8
859	E394	2.51		0.40	
860	E394	2.48		0.23	
869	E394 E394	1.978		-2.74	
913 963	E394 E394	2.22 2.22		-1.31 -1.31	
1283	Inh-695	>1		-1.51	
1429	E394	2.4		-0.25	
1649	Phot.	2.8		2.12	
	normality	ОК			
	n	17			
	outliers	2	<u>Spike</u>		
	mean (n)	2.441	2.208		<111% recovered
	st.dev. (n)	0.2358			
	R(calc.) R(E394:04)	0.660 0.474			
	IX(L334.04)	0.474			
2.5 2		AA	Δ		
.5 –					
1 + *	*				
0.5 -					
o⊥88	8 8 8	88 86 86	913 786	38	357 357 311 311 564 888 888 888 888 883 311 142 311 142 311 142 311 142 311 142 813 813 813 813 813 814 813 814 813 814 814 814 814 814 814 814 814 814 814
1.4 _T					
1.4			Kernel Dens	it.	
1.2 -					
1.2		1			
1 -					
		1			
0.8 -			1		
			1		
0.6 -		(			
0.6 -					
0.6 - 0.4 -					
0.4 -	ſ				
	ſ				
0.4 -	ſ				
0.4 -					

1

2

3

4

0

# Determination of Nonvolatile Matter on sample #1015; results in mg/100 mL

160	method	value	mark	z(targ)	remark	S							
169 171 174 311 315 323	D1353 D1353 D1353	2.3 2.1 1.4		0.28 0.05 -0.77									
342 347 357 359 395 395	D1353 D1353 D1353	4.8 2.6 2.4	G(0.01)	3.20 0.63 0.40									
609 663 704 786 823 859	D1353 D1353 D1353 D1353 D1353	1.7 2.3 2.0 2.52  1.5		-0.42 0.28 -0.07 0.54 									
859 860 913 963 1283 1429 1649	D1353 D1353 D1353 D1353 D1353 Inh-322 D1353	1.5 1.9 1.5 1.3 2.3 3.10 <0.001		-0.65 -0.65 -0.89 0.28 1.21 	False n	egative r	esult, pr	obably d	ifferent u	unit?			
	normality n outliers mean (n) st.dev. (n) R(calc.) R(D1353:03)	OK 15 1 2.06 0.512 1.43 2.40											
6 - 5 - 4 -			·										*
3 - 2						Δ	Δ		Δ	Δ	Δ	۵	
1	<u>م</u>		Δ Δ										
0 T	311 859	88	89 88	704	174	86	171	88	360	282	357	1283	347
0.7			Kernel De	ensity									
0.5 -	$\wedge$												
0.4 -													
0.2 -													
0.1 -	<u> </u>												

2

4

6

8

0

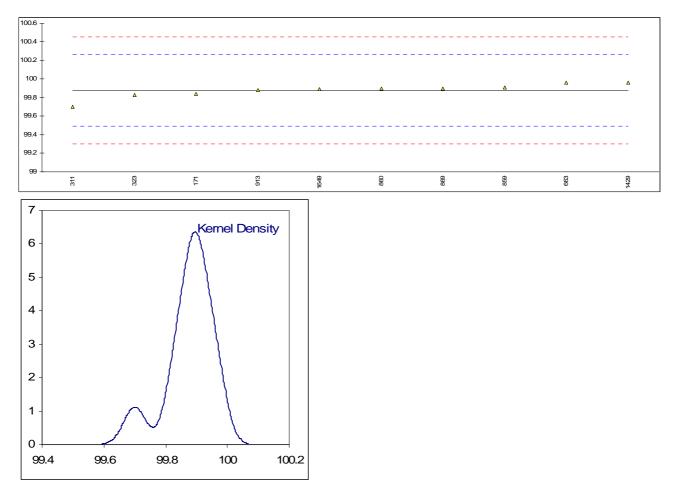
#### lab method value mark z(targ) remarks 169 171 E302 99.930 1.01 E302 174 99.93 1.01 E302 -0.07 311 99.88 315 E302 99.86 -0.50 323 E302 99.85 -0.72 342 E302 99.88 -0.07 347 E302 99.86 -0.50 357 E302 99.88 -0.07 359 E302 99.88 -0.07 395 99.87 -0.29 Inh-124 396 Inh-73 99.88 -0.07 609 Inh-70014 99.83 -1.15 663 99.93 E302 1.01 704 E302 99.865 -0.39 786 E302 99.88 -0.07 823 E302 99.87 -0.29 859 99.88 E302 -0.07 860 E302 99.88 -0.07 869 E302 99.88 -0.07 913 E302 99.88 -0.07 963 E302 99.88 -0.07 1283 Inh576 99.9 0.36 1429 Client method 99.94 1.22 1649 ---------normality not OK 23 n outliers 0 mean (n) 99.883 st.dev. (n) 0.0269 R(calc.) 0.075 R(from E302:95) 0.130 100.05 100 99.95 Δ Δ Δ Δ 99.9 Δ ۵ 99.85 Δ 99.8 99.75 99.7 99.65 99.6 89 323 347 315 704 83 336 786 31 859 88 88 913 342 359 357 88 336 1283 174 4 683 1429 20 Kernel Density 18 16 14 12 10 8 6 4 2

## Determination of Purity (estimated from the Freezing Point) on sample #1015; results in % M/M

99.8

99.85

99.9


99.95

100

0 ↓ 99.75

# Determination of Purity (by titration) on sample #1015; results in %M/M

			_		
lab	method	value	mark	z(targ)	re
169	5004				
171	E301	99.843		-0.18	
174					
311	E301	99.70		-0.92	
315	_				
323	E301	99.83		-0.25	
342					
347					
357					
359					
395					
396					
609					
663	Inh-576	99.96		0.43	
704					
786					
823					
859	E301	99.912		0.18	
860	E301	99.90		0.12	
869	E301	99.901		0.12	
913	E301	99.88		0.01	
963					
1283					
1429	Client method	99.96		0.43	
1649	GC	99.89		0.06	
1040		00.00		0.00	
	normality	ОК			
	n	10			
	outliers	0			
	mean (n)	99.878			
	st.dev. (n)	0.0753			
	R(calc.)	0.0733			
	R(E301:94)	0.211			
	N(L301.94)	0.540			



# Determination of Sulphate as SO4 on sample #1015, results in mg/kg

lab	method	value	mark	z(targ)	remarks
169					
171					
174					
311					
315					
323					
342					
347					
357					
359					
395					
396					
609					
663					
704	Inh-19814	5.2		-0.75	
786	Inh-19814	7.45		2.44	
823					
859	Inh-70021	7		1.80	
860	Inh-676	5		-1.04	
869	Inh-70021	4		-2.45	
913					
963	Inh-3.14	<10			
1283	Inh-695	>1			
1429	Client method	<1		<-6.58	False negative?
1649					
		014			
	normality	OK			
	n	5	0.1		
	outliers	0	<u>Spike</u>		
	mean (n)	5.7	5.0		<114% recovered
	st.dev. (n)	1.45			
	R(calc.)	4.1			
	R(Horwitz)	2.0			
9 T					
8 -					
7 -					A
ľ †					Δ
6 -					
5 -			۵		Δ
4 +	<b>A</b>				
3 -					
2 -					
1 +					
o 🖵 🚽	0				4 0 0
	8		88		74 88 89

# Determination of Water on sample #1015, results in %M/M

			<u> </u>		
lab 169	method E1064	value 0.0761	mark	<b>z(targ)</b> -0.15	remarks
109	E 1064 E 302	0.0761		-0.15 -0.34	
174	E302	0.0750		-0.22	
311	E302	0.078		-0.05	
315	E302	0.0810		0.12	
323 342	E203 E1064	0.084 0.0764		0.29 -0.14	
342	E1064	0.0750		-0.14	
357	E1064	0.077		-0.10	
359	E302	0.077		-0.10	
395 396	E1064	0.0828		0.22	
609	D1364	0.083		0.23	
663	E1064	0.076		-0.16	
704	E302	0.086		0.40	
786 823	E1064 E302	0.0766 0.090		-0.13 0.62	
859	E302 E203	0.090		-0.08	
860	E302	0.073		-0.33	
869	E302	0.0693		-0.54	
913	E302	0.084		0.29	
963 1283	E302 Inh-2362	0.07849 0.0898		-0.02 0.61	
1429	D1364	0.074	С	-0.27	First reported 740
1649	KF TITR	0.08		0.06	
	normality	ОК			
	n	24			
	outliers	0			
	mean (n)	0.0789			
	st.dev. (n) R(calc.)	0.00527 0.0148			
	R(E302:95)	0.0500			
^{0.14} T					
0.12 -					
0.1 -					
0.08		Δ Δ	Δ Δ	Δ Δ	
0.06 -					
0.04 -					
0.02 -					
o⊥8	-1- 	347 174	<u>8</u> 8	38	82 <u>8</u> 2 <del>5</del> 7 83 83 <del>5</del> 8 83 <del>5</del> 8 83 <del>5</del> 8 83 <del>5</del>
8	171 880 1423	347 174	8 9	342	86 88 88 88 88 88 88 88 88 88 88 88 88 8
90 -					
			Kernel D	ensity	
80 -		Λ			
70 -		$\int$			
10					
60 -		f l			
50 -					
40 -					
		\ \			
30 -					
20 -					
20 ]			L		
10 -			{		
		1	1		
0+	0.00	-	0.1		_
0	0.05	0	0.1	0.15	
L					

## **APPENDIX 2**

#### List of participants

- 1 laboratory in AUSTRIA
- 1 laboratory in BELGIUM
- 2 laboratories in FINLAND
- 2 laboratories in INDIA
- 2 laboratories in ITALY
  - 1 laboratory in KOREA
- 1 laboratory in MALAYSIA
- 3 laboratories in P.R. of CHINA
  - 1 laboratory in RUSSIA
- 1 laboratory in SAUDI ARABIA
- 2 laboratories in SPAIN
- 1 laboratory in THAILAND
- 2 laboratories in THE NETHERLANDS
- 3 laboratories in U.S.A.
  - 1 laboratory in UKRAINE
  - 1 laboratory in UNITED KINGDOM

# **APPENDIX 3**

### Abbreviations:

С	= final result after checking of first reported suspect result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
E	= error in calculations
U	= error in reporting unit
ex	= excluded from calculations
n.a.	= not applicable
wd	= withdrawn method

## Literature:

- 1 i.i.s. Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, January 2010
- 2 ASTM E178:89
- 3 ASTM E1301:89
- 4 ISO 5725:86
- 5 ISO 5725, parts 1-6, 1994
- 6 ISO13528-05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP 367:84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 13 Analytical Methods Committee Technical brief, No4 January 2001
- 14 The Royal Society of Chemistry 2002, Analyst 2002, 127 page 1359-1364, P.J. Lowthian and M. Thompson (see http://www.rsc.org/suppdata/an/b2/b205600n/)